大模型十大高频问题一:RAG(检索增强生成)和微调,哪个更适合我的业务场景?

Key Words:人工智能入 AI入门 大数据培训 数字孪生培训 大模型培训 知识图谱培训 软件架构培训 强化学习培训 人工智能培训 具身智能培训 深度学习培训 学习路径 智能体 LLM VLA 世界模型

这是一个非常关键且高频的问题。RAG(检索增强生成)和微调(Fine-tuning)并非互斥,而是互补的技术路径。选择哪种(或组合使用),取决于你的业务目标、数据特性、成本预算和更新频率。

高频原因:两者都能注入领域知识,但适用边界模糊。

核心困惑:

RAG 实时性强但依赖检索质量;

微调效果稳定但更新成本高。

解决方案

一、核心区别:解决什么问题?

二、决策对照表:根据您的业务特征选择

三、典型央国企场景推荐

四、成本与实施复杂度对比

五、实操建议:如何验证?

先做RAG POC:

用 Dify / FastGPT / 阿里云百炼,上传10份核心文档;

测试10个典型问题,看召回率与答案质量。

再评估是否需微调:

如果RAG能答对80%以上问题 → 坚持RAG;

如果模型"知道知识但不会用"(如答非所问、格式错误)→ 补充微调。

终极测试:

构造一个需要结合知识+逻辑的问题:

"根据2024年新修订的《安全生产条例》第15条,我部门上周发生的设备漏油事件是否构成重大隐患?请按正式报告格式撰写初步分析。"

若RAG只能回答前半句,后半句混乱 → 必须微调。

总结:选择指南

点点赞,去收藏,关注我,了解更多资讯。
中国人工智能培训网

相关推荐
小杨互联网13 小时前
LLM应用三大隐形风险与防护方案详解
llm
龙腾亚太17 小时前
航空零部件加工变形难题破解:数字孪生 + 深度学习的精度控制实战
人工智能·深度学习·数字孪生·ai工程师·ai证书·转型ai
小汤圆不甜不要钱17 小时前
「Datawhale」RAG技术全栈指南 Task 5
python·llm·rag
五点钟科技18 小时前
Deepseek-OCR:《DeepSeek-OCR: Contexts Optical Compression》 论文要点解读
人工智能·llm·ocr·论文·大语言模型·deepseek·deepseek-ocr
AndrewHZ20 小时前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体
老蒋每日coding1 天前
AIGC领域多模态大模型的知识图谱构建:技术框架与实践路径
人工智能·aigc·知识图谱
山顶夕景1 天前
【LLM】多模态智能体Kimi-K2.5模型
llm·agent·多模态
JTnnnnn1 天前
【架構優化】拒絕 LLM 幻覺:設計基於 Python 路由的 AntV 智慧圖表生成系統
llm·antv·dify
AndrewHZ1 天前
【AI黑话日日新】什么是skills?
语言模型·大模型·llm·claude code·skills