一、红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或
Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
注意:红黑树确保没有一条路径会比其他路径长出俩倍,也就是说最常路径不超过最短路径的两倍
二、红黑树的性质
-
每个结点不是红色就是黑色
-
根节点是黑色的
-
如果一个节点是红色的,则它的两个孩子结点是黑色的(说明任何路径没有连续的红色节点)
-
对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 (每条路径上的黑色节点数量相等)
-
每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

三、红黑树的插入操作
3.1红黑树的插入操作思路图

3.2红黑树的插入代码实现
cpp
#pragma once
#include<iostream>
#include<set>
#include<assert.h>
#include<stdbool.h>
#include<time.h>
#include<vector>
using namespace std;
enum color
{
RED,
BLACK
};
template<typename K,typename V>
class RBTreeNode
{
public:
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
color _color;
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_kv(kv)
,_color(RED)
{ }
};
template<typename K,typename V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_color = BLACK;//根节点设置成黑色
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
cur->_color = RED;//把除根节点以外的节点首次设置成红色
//把新结点链接到上一个结点的后面
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else if (parent->_kv.first > kv.first)
{
parent->_left = cur;
}
else
{
assert(false);
}
cur->_parent = parent;
//对颜色进行调节
while (parent && parent->_color == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_color == RED)//uncle存在且为红色
{
//变色处理
uncle->_color = BLACK;
parent->_color = BLACK;
grandfather->_color = RED;
//继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else//uncle不存在或者uncle为黑色
{
if (cur == parent->_left)//cur在parent左边,进行单旋
{
//对grandfather进行右旋
RotateR(grandfather);
//对parent和grandfather进行颜色的更改
parent->_color = BLACK;
grandfather->_color = RED;
}
else//cur在parent的右边,进行双旋
{
//先对parent进行左旋
RotateL(parent);
//在对grandfather进行右旋
RotateR(grandfather);
grandfather->_color = RED;
cur->_color = BLACK;
}
break;
}
}
else//parent在grandfather的右边
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_color == RED)//uncle存在且uncle为红色
{
//变色处理
parent->_color = BLACK;
grandfather->_color = RED;
uncle->_color = BLACK;
//继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else//uncle不存在或者uncle为黑色
{
if (cur == parent->_right)//cur在parent的右边(cur和pg在一条直线上)
{
//向左进行旋
RotateL(grandfather);
//颜色处理
parent->_color = BLACK;
grandfather->_color = RED;
}
else//cur在parent的左边
{
//先进行右旋
RotateR(parent);
//在进行左旋
RotateL(grandfather);
cur->_color = BLACK;
grandfather->_color = RED;
}
break;
}
}
}
_root->_color = BLACK;
return true;
}
//左单旋
void RotateL(Node* parent)
{
Node* cur = parent->_right;
Node* curleft = cur->_left;
parent->_right = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_left = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (parent == _root)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
//右单旋
void RotateR(Node* parent)
{
Node* cur = parent->_left;
Node* curright = cur->_right;
parent->_left = curright;
if (curright)
curright->_parent = parent;
Node* ppnode = parent->_parent;
cur->_right = parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
//红黑树判断是否平衡
bool CheckColor(Node* root, int blacknum, int benchmark)//此处不加引用算的是每条路径上的节点数量
{
if (root == nullptr)
{
if (blacknum != benchmark)
{
return false;
}
return true;
}
if (root->_color == BLACK)
{
++blacknum;
}
if (root->_color == RED && root->_parent && root->_parent->_color == RED)
{
cout << "root->_kv.first" << "出现连续的红色结点" << endl;
return false;
}
return CheckColor(root->_left, blacknum, benchmark) && CheckColor(root->_right, blacknum, benchmark);
}
bool _IsBalance()
{
return IsBalance(_root);
}
bool IsBalance(Node* root)
{
if (root == nullptr)
{
return true;
}
//检查根节点是否为黑色
if (root->_color != BLACK)
{
return false;
}
//求出最左路径作为基准值
int benchmark = 0;
Node* cur = root;
while (cur)
{
if (cur->_color == BLACK)
{
++benchmark;
}
cur = cur->_left;
}
//检查是否右连续的红色结点
return CheckColor(root, 0, benchmark);
}
//求高度
int Height()
{
return Height(_root);
}
int Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
protected:
Node* _root = nullptr;
};
四、红黑树的验证
红黑树的检测分为两步:
-
检测其是否满足二叉搜索树(中序遍历是否为有序序列)
-
检测其是否满足红黑树的性质
cpp
//红黑树判断是否平衡
bool CheckColor(Node* root, int blacknum, int benchmark)//此处不加引用算的是每条路径上的节点数量
{
if (root == nullptr)
{
if (blacknum != benchmark)
{
return false;
}
return true;
}
if (root->_color == BLACK)
{
++blacknum;
}
if (root->_color == RED && root->_parent && root->_parent->_color == RED)
{
cout << "root->_kv.first" << "出现连续的红色结点" << endl;
return false;
}
return CheckColor(root->_left, blacknum, benchmark) && CheckColor(root->_right, blacknum, benchmark);
}
bool _IsBalance()
{
return IsBalance(_root);
}
bool IsBalance(Node* root)
{
if (root == nullptr)
{
return true;
}
//检查根节点是否为黑色
if (root->_color != BLACK)
{
return false;
}
//求出最左路径作为基准值
int benchmark = 0;
Node* cur = root;
while (cur)
{
if (cur->_color == BLACK)
{
++benchmark;
}
cur = cur->_left;
}
//检查是否右连续的红色结点
return CheckColor(root, 0, benchmark);
}
//求高度
int Height()
{
return Height(_root);
}
int Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
五、红黑树的测试
cpp
int main()
{
int a[] = { 1,2,4,12,45,67 };
RBTree<int, int> RBT1;
for (auto element : a)
{
RBT1.Insert(make_pair(element, element));
cout << "Insert" << element << ":" << RBT1._IsBalance() << endl;
cout << "高度为:" << RBT1.Height() << endl;
}
const int N = 100;
srand((size_t)time(0));
RBTree<int, int> RBT2;
vector<int> v;
for (size_t i = 0; i <= N; i++)
{
v.push_back(rand());
}
for (auto e : v)
{
RBT2.Insert(make_pair(e, e));
cout << "Insert" << e << ":" << RBT2._IsBalance() << endl;
cout << "高度为:" << RBT2.Height() << endl;
}
return 0;
}
六、红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log_2 N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。