一个jupyter组件的信号查看工具

一个交互式查看通道信号,查看信号应用滤波的jupyter界面小工具。

没有提供数据和随机生成的部分。

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import display
import ipywidgets as widgets
from ipywidgets import HBox, VBox, Play, jslink
from scipy import signal

plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False

def apply_filter(y, fs, mode, low, high, taps, order, notch_freq, notch_q):
    if mode == 'None':
        return y
    if mode == 'FIR':
        if low is None or high is None or low <= 0 or high >= fs/2 or low >= high:
            return y
        b = signal.firwin(taps, [low, high], pass_zero=False, fs=fs)
        return signal.filtfilt(b, [1.0], y, method='pad')
    if mode == 'Butter':
        if low is None or high is None or low <= 0 or high >= fs/2 or low >= high:
            return y
        wn = [low/(fs/2), high/(fs/2)]
        b, a = signal.butter(order, wn, btype='band')
        return signal.filtfilt(b, a, y, axis=0)
    if mode == 'Notch':
        if notch_freq is None or notch_freq <= 0 or notch_freq >= fs/2:
            return y
        b, a = signal.iirnotch(notch_freq/(fs/2), notch_q)
        return signal.filtfilt(b, a, y, axis=0)
    return y

def interactive_timeline(dataseg1, fs=250, default_win_sec=3.0):
    arr = dataseg1.values if isinstance(dataseg1, pd.DataFrame) else np.asarray(dataseg1)
    arr = np.asarray(arr, dtype=np.float32)
    if arr.ndim == 1:
        arr = arr[None, :]
    n_roi, n_samples = arr.shape
    t = np.arange(n_samples) / fs

    roi_slider = widgets.IntSlider(min=0, max=n_roi-1, value=0, description='ROI')
    win_slider = widgets.FloatSlider(min=0.5, max=min(30.0, n_samples/fs), step=0.5, value=default_win_sec, description='窗口(s)')
    step_s = max(1/fs, default_win_sec/100.0)
    range_slider = widgets.FloatRangeSlider(min=0.0, max=n_samples/fs, step=step_s, value=(0.0, min(default_win_sec, n_samples/fs)), description='时间范围(s)', continuous_update=False)
    play = Play(interval=100, value=0, min=0, max=n_samples-1, step=max(1, int(fs*0.2)))
    pos_slider = widgets.IntSlider(min=0, max=n_samples-1, step=max(1, int(fs*0.2)), value=0, description='位置')
    jslink((play, 'value'), (pos_slider, 'value'))
    decim_slider = widgets.IntSlider(min=1, max=20, value=1, description='抽点')

    filter_enable = widgets.Checkbox(value=False, description='应用滤波')
    filter_mode = widgets.Dropdown(options=['None', 'FIR', 'Butter', 'Notch'], value='None', description='类型')
    lowcut = widgets.FloatSlider(min=0.5, max=120.0, step=0.5, value=8.0, description='低切(Hz)')
    highcut = widgets.FloatSlider(min=1.0, max=120.0, step=0.5, value=25.0, description='高切(Hz)')
    fir_taps = widgets.IntSlider(min=32, max=2048, step=32, value=256, description='FIR taps')
    butter_order = widgets.IntSlider(min=2, max=8, step=1, value=4, description='阶数')
    notch_f = widgets.FloatSlider(min=45.0, max=65.0, step=0.5, value=50.0, description='陷波(Hz)')
    notch_q = widgets.FloatSlider(min=5.0, max=50.0, step=1.0, value=30.0, description='Q值')
    show_mode = widgets.Dropdown(options=['滤波', '原始', '叠加'], value='滤波', description='显示')

    apply_btn = widgets.Button(description='应用滤波', button_style='success')
    clear_btn = widgets.Button(description='清除滤波', button_style='warning')
    status = widgets.HTML(value='状态:未应用')
    out = widgets.Output()

    confirmed = {'enabled': False, 'mode': 'None', 'low': None, 'high': None, 'taps': 256, 'order': 4, 'notch_f': None, 'notch_q': None}

    def current_params():
        return {
            'enabled': filter_enable.value,
            'mode': filter_mode.value,
            'low': lowcut.value if filter_mode.value in ('FIR', 'Butter') else None,
            'high': highcut.value if filter_mode.value in ('FIR', 'Butter') else None,
            'taps': fir_taps.value if filter_mode.value == 'FIR' else 256,
            'order': butter_order.value if filter_mode.value == 'Butter' else 4,
            'notch_f': notch_f.value if filter_mode.value == 'Notch' else None,
            'notch_q': notch_q.value if filter_mode.value == 'Notch' else None,
        }

    def render():
        with out:
            out.clear_output(wait=True)
            roi =xiu.value
            start_s, end_s = range_slider.value
            center_s = (start_s + end_s) / 2.0
            half = win_slider.value / 2.0
            start_s = max(0.0, center_s - half)
            end_s = min(n_samples/fs, center_s + half)
            start_idx = max(0, int(start_s * fs))
            end_idx = min(n_samples, int(end_s * fs))
            if end_idx <= start_idx:
                end_idx = start_idx + 1
            decim = max(1, decim_slider.value)

            y_raw = arr[roi, start_idx:end_idx]
            params = confirmed if confirmed['enabled'] else {'enabled': False, 'mode': 'None'}
            if params['enabled']:
                if params['mode'] in ('FIR', 'Butter'):
                    y_f = apply_filter(y_raw, fs, params['mode'], params['low'], params['high'], params.get('taps', 256), params.get('order', 4), None, None)
                elif params['mode'] == 'Notch':
                    y_f = apply_filter(y_raw, fs, 'Notch', None, None, None, None, params.get('notch_f', 50.0), params.get('notch_q', 30.0))
                else:
                    y_f = y_raw
            else:
                y_f = y_raw

            x_plot = t[start_idx:end_idx:decim]
            plt.figure(figsize=(12, 3))
            if show_mode.value == '原始':
                plt.plot(x_plot, y_raw[::decim], label='原始')
            elif show_mode.value == '滤波':
                plt.plot(x_plot, y_f[::decim], label='滤波')
            else:
                plt.plot(x_plot, y_raw[::decim], label='原始', alpha=0.6)
                plt.plot(x_plot, y_f[::decim], label='滤波', alpha=0.9)
            plt.xlim(start_s, end_s)
            plt.xlabel('Time (s)')
            plt.ylabel('Amplitude')
            plt.title(f'ROI {roi} | {start_s:.2f}s - {end_s:.2f}s')
            plt.legend(loc='upper right')
            plt.tight_layout()
            plt.show()

    def on_pos_change(change):
        center_s = change['new'] / fs
        half = win_slider.value / 2.0
        s0 = max(0.0, center_s - half)
        s1 = min(n_samples/fs, center_s + half)
        range_slider.value = (s0, s1)

    def on_apply_clicked(b):
        p = current_params()
        confirmed.update(p)
        status.value = '状态:已应用'
        render()

    def on_clear_clicked(b):
        confirmed.update({'enabled': False, 'mode': 'None', 'low': None, 'high': None, 'taps': 256, 'order': 4, 'notch_f': None, 'notch_q': None})
        status.value = '状态:未应用'
        render()

    pos_slider.observe(on_pos_change, 'value')
    for w in (roi_slider, range_slider, win_slider, decim_slider, show_mode):
        w.observe(lambda change: render(), 'value')
    apply_btn.on_click(on_apply_clicked)
    clear_btn.on_click(on_clear_clicked)

    render()
    ui_top = HBox([roi_slider, win_slider, decim_slider, show_mode])
    ui_filter_band = HBox([filter_enable, filter_mode, lowcut, highcut])
    ui_filter_params = HBox([fir_taps, butter_order, notch_f, notch_q])
    ui_action = HBox([apply_btn, clear_btn, status])
    ui_range = HBox([range_slider])
    ui_play = HBox([play, pos_slider])
    display(VBox([ui_top, ui_filter_band, ui_filter_params, ui_action, ui_range, ui_play]), out)

interactive_timeline(data['Value'], fs=250, default_win_sec=3.0)

修改data['Value'] 这个值(通道,timeseries)。就可以使用这个工具。

interactive_timeline(data['Value'], fs=250, default_win_sec=3.0)

使用的四阶butter滤波器

Delta波(0.5Hz-4Hz)

Theta波(4Hz-8Hz)


已经进行过陷波处理。Q值是和陷波相关的参数。

核心关系:Q值决定了陷波滤波器的"陡峭度"和"选择性"

所以我们可以观察到100HZ的能量被滤去的差不多了。但是使用了较低的Q值,导致其他周围的频率,尖峰的高频成分,被去掉了一些。

相关推荐
二狗哈9 分钟前
czsc入门8:Signal信号
python·量化·czsc
IT北辰24 分钟前
【Python实战升级版】企业用电深度分析完整版|十大可视化图表+智慧能源看板,电费优化/数据汇报
python
小白学大数据1 小时前
爬虫技术选股:Python 自动化筛选潜力股
开发语言·爬虫·python·自动化
践行见远1 小时前
django之认证与权限
python·django
青春不败 177-3266-05202 小时前
基于R语言lavaan结构方程模型(SEM)实践技术应用
python·r语言·贝叶斯·生态学·结构方程·sem
费弗里2 小时前
进阶技巧:在Dash应用中直接使用原生React组件
python·dash
Ashley_Amanda2 小时前
Python入门知识点梳理
开发语言·windows·python
tjjucheng2 小时前
小程序定制开发哪家有完整流程
python
海棠AI实验室2 小时前
第十二章 类型标注与可读性:让协作与复用更容易
python
羊村积极分子懒羊羊2 小时前
python课程三月二十九号粗略总结
开发语言·python