一个jupyter组件的信号查看工具

一个交互式查看通道信号,查看信号应用滤波的jupyter界面小工具。

没有提供数据和随机生成的部分。

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import display
import ipywidgets as widgets
from ipywidgets import HBox, VBox, Play, jslink
from scipy import signal

plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False

def apply_filter(y, fs, mode, low, high, taps, order, notch_freq, notch_q):
    if mode == 'None':
        return y
    if mode == 'FIR':
        if low is None or high is None or low <= 0 or high >= fs/2 or low >= high:
            return y
        b = signal.firwin(taps, [low, high], pass_zero=False, fs=fs)
        return signal.filtfilt(b, [1.0], y, method='pad')
    if mode == 'Butter':
        if low is None or high is None or low <= 0 or high >= fs/2 or low >= high:
            return y
        wn = [low/(fs/2), high/(fs/2)]
        b, a = signal.butter(order, wn, btype='band')
        return signal.filtfilt(b, a, y, axis=0)
    if mode == 'Notch':
        if notch_freq is None or notch_freq <= 0 or notch_freq >= fs/2:
            return y
        b, a = signal.iirnotch(notch_freq/(fs/2), notch_q)
        return signal.filtfilt(b, a, y, axis=0)
    return y

def interactive_timeline(dataseg1, fs=250, default_win_sec=3.0):
    arr = dataseg1.values if isinstance(dataseg1, pd.DataFrame) else np.asarray(dataseg1)
    arr = np.asarray(arr, dtype=np.float32)
    if arr.ndim == 1:
        arr = arr[None, :]
    n_roi, n_samples = arr.shape
    t = np.arange(n_samples) / fs

    roi_slider = widgets.IntSlider(min=0, max=n_roi-1, value=0, description='ROI')
    win_slider = widgets.FloatSlider(min=0.5, max=min(30.0, n_samples/fs), step=0.5, value=default_win_sec, description='窗口(s)')
    step_s = max(1/fs, default_win_sec/100.0)
    range_slider = widgets.FloatRangeSlider(min=0.0, max=n_samples/fs, step=step_s, value=(0.0, min(default_win_sec, n_samples/fs)), description='时间范围(s)', continuous_update=False)
    play = Play(interval=100, value=0, min=0, max=n_samples-1, step=max(1, int(fs*0.2)))
    pos_slider = widgets.IntSlider(min=0, max=n_samples-1, step=max(1, int(fs*0.2)), value=0, description='位置')
    jslink((play, 'value'), (pos_slider, 'value'))
    decim_slider = widgets.IntSlider(min=1, max=20, value=1, description='抽点')

    filter_enable = widgets.Checkbox(value=False, description='应用滤波')
    filter_mode = widgets.Dropdown(options=['None', 'FIR', 'Butter', 'Notch'], value='None', description='类型')
    lowcut = widgets.FloatSlider(min=0.5, max=120.0, step=0.5, value=8.0, description='低切(Hz)')
    highcut = widgets.FloatSlider(min=1.0, max=120.0, step=0.5, value=25.0, description='高切(Hz)')
    fir_taps = widgets.IntSlider(min=32, max=2048, step=32, value=256, description='FIR taps')
    butter_order = widgets.IntSlider(min=2, max=8, step=1, value=4, description='阶数')
    notch_f = widgets.FloatSlider(min=45.0, max=65.0, step=0.5, value=50.0, description='陷波(Hz)')
    notch_q = widgets.FloatSlider(min=5.0, max=50.0, step=1.0, value=30.0, description='Q值')
    show_mode = widgets.Dropdown(options=['滤波', '原始', '叠加'], value='滤波', description='显示')

    apply_btn = widgets.Button(description='应用滤波', button_style='success')
    clear_btn = widgets.Button(description='清除滤波', button_style='warning')
    status = widgets.HTML(value='状态:未应用')
    out = widgets.Output()

    confirmed = {'enabled': False, 'mode': 'None', 'low': None, 'high': None, 'taps': 256, 'order': 4, 'notch_f': None, 'notch_q': None}

    def current_params():
        return {
            'enabled': filter_enable.value,
            'mode': filter_mode.value,
            'low': lowcut.value if filter_mode.value in ('FIR', 'Butter') else None,
            'high': highcut.value if filter_mode.value in ('FIR', 'Butter') else None,
            'taps': fir_taps.value if filter_mode.value == 'FIR' else 256,
            'order': butter_order.value if filter_mode.value == 'Butter' else 4,
            'notch_f': notch_f.value if filter_mode.value == 'Notch' else None,
            'notch_q': notch_q.value if filter_mode.value == 'Notch' else None,
        }

    def render():
        with out:
            out.clear_output(wait=True)
            roi =xiu.value
            start_s, end_s = range_slider.value
            center_s = (start_s + end_s) / 2.0
            half = win_slider.value / 2.0
            start_s = max(0.0, center_s - half)
            end_s = min(n_samples/fs, center_s + half)
            start_idx = max(0, int(start_s * fs))
            end_idx = min(n_samples, int(end_s * fs))
            if end_idx <= start_idx:
                end_idx = start_idx + 1
            decim = max(1, decim_slider.value)

            y_raw = arr[roi, start_idx:end_idx]
            params = confirmed if confirmed['enabled'] else {'enabled': False, 'mode': 'None'}
            if params['enabled']:
                if params['mode'] in ('FIR', 'Butter'):
                    y_f = apply_filter(y_raw, fs, params['mode'], params['low'], params['high'], params.get('taps', 256), params.get('order', 4), None, None)
                elif params['mode'] == 'Notch':
                    y_f = apply_filter(y_raw, fs, 'Notch', None, None, None, None, params.get('notch_f', 50.0), params.get('notch_q', 30.0))
                else:
                    y_f = y_raw
            else:
                y_f = y_raw

            x_plot = t[start_idx:end_idx:decim]
            plt.figure(figsize=(12, 3))
            if show_mode.value == '原始':
                plt.plot(x_plot, y_raw[::decim], label='原始')
            elif show_mode.value == '滤波':
                plt.plot(x_plot, y_f[::decim], label='滤波')
            else:
                plt.plot(x_plot, y_raw[::decim], label='原始', alpha=0.6)
                plt.plot(x_plot, y_f[::decim], label='滤波', alpha=0.9)
            plt.xlim(start_s, end_s)
            plt.xlabel('Time (s)')
            plt.ylabel('Amplitude')
            plt.title(f'ROI {roi} | {start_s:.2f}s - {end_s:.2f}s')
            plt.legend(loc='upper right')
            plt.tight_layout()
            plt.show()

    def on_pos_change(change):
        center_s = change['new'] / fs
        half = win_slider.value / 2.0
        s0 = max(0.0, center_s - half)
        s1 = min(n_samples/fs, center_s + half)
        range_slider.value = (s0, s1)

    def on_apply_clicked(b):
        p = current_params()
        confirmed.update(p)
        status.value = '状态:已应用'
        render()

    def on_clear_clicked(b):
        confirmed.update({'enabled': False, 'mode': 'None', 'low': None, 'high': None, 'taps': 256, 'order': 4, 'notch_f': None, 'notch_q': None})
        status.value = '状态:未应用'
        render()

    pos_slider.observe(on_pos_change, 'value')
    for w in (roi_slider, range_slider, win_slider, decim_slider, show_mode):
        w.observe(lambda change: render(), 'value')
    apply_btn.on_click(on_apply_clicked)
    clear_btn.on_click(on_clear_clicked)

    render()
    ui_top = HBox([roi_slider, win_slider, decim_slider, show_mode])
    ui_filter_band = HBox([filter_enable, filter_mode, lowcut, highcut])
    ui_filter_params = HBox([fir_taps, butter_order, notch_f, notch_q])
    ui_action = HBox([apply_btn, clear_btn, status])
    ui_range = HBox([range_slider])
    ui_play = HBox([play, pos_slider])
    display(VBox([ui_top, ui_filter_band, ui_filter_params, ui_action, ui_range, ui_play]), out)

interactive_timeline(data['Value'], fs=250, default_win_sec=3.0)

修改data['Value'] 这个值(通道,timeseries)。就可以使用这个工具。

interactive_timeline(data['Value'], fs=250, default_win_sec=3.0)

使用的四阶butter滤波器

Delta波(0.5Hz-4Hz)

Theta波(4Hz-8Hz)


已经进行过陷波处理。Q值是和陷波相关的参数。

核心关系:Q值决定了陷波滤波器的"陡峭度"和"选择性"

所以我们可以观察到100HZ的能量被滤去的差不多了。但是使用了较低的Q值,导致其他周围的频率,尖峰的高频成分,被去掉了一些。

相关推荐
Q_Q19632884751 小时前
python+django/flask+vue的多媒体素材管理系统
spring boot·python·django·flask·node.js·php
黑客思维者1 小时前
智能配电系统用户敏感数据脱敏详细设计:从静态遮盖到动态策略
c++·python·嵌入式系统·数据脱敏·智能配电系统
陈鋆1 小时前
Langchain-Chatchat[四、RAG对话流程代码解析]
开发语言·python·langchain
ServBay1 小时前
Django 6.0 发布,新增原生任务队列与 CSP 支持
后端·python·django
β添砖java1 小时前
python第一阶段第九章异常、模块、包
开发语言·python
2501_941982051 小时前
企业微信Python SDK:高效群发消息实战
开发语言·python·企业微信
用户12039112947262 小时前
AIGC 时代,数据库终于可以“听懂人话”了:从零打造自然语言操作 SQLite 的完整实战
python·sqlite·aigc
Q_Q5110082852 小时前
python+django/flask+vue农业电商服务系统
spring boot·python·pycharm·django·flask
帕巴啦2 小时前
Python计算累积频率——Origin绘制累积频率图
python·绘图·origin·累积频率·python计算累积频率·origin绘制累积频率图