理解pytorch中的L2正则项

1 问题

  1. 正则化与偏差-方差分解之间的联系。

  2. Weight decay全值衰减。

2 方法

  1. regularization:减小方差的策略

    误差可分解为:偏差,方差与噪声之和。即误差=偏差+方差+噪声之和偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力

    方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响

    噪声则表达了在当前任务上任何学习算法所能达到的期望泛化误差

    方差(Variance)是刻画数据扰动所造成的影响

    偏差是指刻画学习算法的本身拟合能力

    目标函数处理公式:( Objective Function ): Obj = Cost + Regularization Term

  2. 权值衰减代码复现模型搭建

  3. classMLP(nn.Module):

  4. def__init__(self, neural_num):

  5. super(MLP, self).init()

  6. self.linears=nn.Sequential(

  7. nn.Linear(1, neural_num),

  8. nn.ReLU(inplace=True),

  9. nn.Linear(neural_num, neural_num),

  10. nn.ReLU(inplace=True),

  11. nn.Linear(neural_num, neural_num),

  12. nn.ReLU(inplace=True),

  13. nn.Linear(neural_num, 1),

  14. )

  15. defforward(self, x):

  16. returnself.linears(x)

3 总结

针对问题一:对于pytorch模型中存在的过拟合与欠拟合做出明确原因与产生的数据来源的算法做出明确标注,解释清楚了误差的组成成分。

针对问题二:正则化策略的目的就是降低方差,减小过拟合的发生。weight_decay是在优化器中实现的,在代码中构建了两个优化器,一个优化器不带有正则化,一个优化器带有正则化。对与模型的优化有进一步提升。

相关推荐
数科云4 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区4 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南4 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu4 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现4 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_5 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z5 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
web3.08889995 小时前
微店商品详情API实用
python·json·时序数据库
知乎的哥廷根数学学派5 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor5 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc