理解pytorch中的L2正则项

1 问题

  1. 正则化与偏差-方差分解之间的联系。

  2. Weight decay全值衰减。

2 方法

  1. regularization:减小方差的策略

    误差可分解为:偏差,方差与噪声之和。即误差=偏差+方差+噪声之和偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力

    方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响

    噪声则表达了在当前任务上任何学习算法所能达到的期望泛化误差

    方差(Variance)是刻画数据扰动所造成的影响

    偏差是指刻画学习算法的本身拟合能力

    目标函数处理公式:( Objective Function ): Obj = Cost + Regularization Term

  2. 权值衰减代码复现模型搭建

  3. classMLP(nn.Module):

  4. def__init__(self, neural_num):

  5. super(MLP, self).init()

  6. self.linears=nn.Sequential(

  7. nn.Linear(1, neural_num),

  8. nn.ReLU(inplace=True),

  9. nn.Linear(neural_num, neural_num),

  10. nn.ReLU(inplace=True),

  11. nn.Linear(neural_num, neural_num),

  12. nn.ReLU(inplace=True),

  13. nn.Linear(neural_num, 1),

  14. )

  15. defforward(self, x):

  16. returnself.linears(x)

3 总结

针对问题一:对于pytorch模型中存在的过拟合与欠拟合做出明确原因与产生的数据来源的算法做出明确标注,解释清楚了误差的组成成分。

针对问题二:正则化策略的目的就是降低方差,减小过拟合的发生。weight_decay是在优化器中实现的,在代码中构建了两个优化器,一个优化器不带有正则化,一个优化器带有正则化。对与模型的优化有进一步提升。

相关推荐
qxbs1 小时前
汽修帮手资料库终身免费使用——首家免费资料库网站,查汽车维修资料就用汽修帮手,里面几万套车型维修手册电路图保养手册培训资料针脚定义保险丝图解
人工智能·汽车
学兔兔VIP1 小时前
多模态AI融合的电力边缘物联终端研究与应用
人工智能·物联网·电力系统·智能终端·多模态ai
阿恩.7701 小时前
金融经济学国际期刊/会议:前沿研究与创新
大数据·人工智能·笔记·计算机网络
smart19981 小时前
Infortrend普安存储GS支持GPU Direct存储,带宽最大化适合AI/HPC/科研制造
人工智能·能源·制造·智能硬件
Cathy Bryant1 小时前
概率论直觉(三):边缘化
笔记·机器学习·数学建模·概率论
R-G-B1 小时前
【P19 机器学习-分类算法及应用实践】手写数字识别(KNN)
python·机器学习·分类·手写数字识别·knn算法
南极星10051 小时前
OPENCV(python)--初学之路(十二)霍夫线/圆变换
人工智能·opencv·计算机视觉
roman_日积跬步-终至千里1 小时前
【模式识别与机器学习】机器学习练习题集
人工智能·机器学习
海岸线科技1 小时前
打破离散制造“内卷”:工业智能体(AI Agent)落地的五大核心原则
人工智能·制造