flink的CDC 的种类

Flink CDC(Change Data Capture)的实现方式主要有以下两种类型:


1. 基于查询的增量同步

通过定期查询源数据库的增量数据(如时间戳字段、自增ID)实现变更捕获。

  • 适用场景:数据量较小、更新频率低的场景。
  • 特点
    • 实现简单,无需依赖数据库日志。
    • 可能对源数据库产生查询压力。
    • 无法捕获删除操作(需额外标记)。

2. 基于日志解析的实时同步

通过解析数据库的事务日志(如MySQL的binlog、PostgreSQL的WAL)捕获变更。

  • 主流方案:如Debezium + Flink的组合。
  • 特点
    • 实时性强:秒级延迟捕获增删改操作。
    • 低侵入性:不直接影响源数据库性能。
    • 完整性高 :支持INSERT/UPDATE/DELETE全量操作。
    • 典型工具
      • MySQL → Debezium MySQL Connector
      • PostgreSQL → Debezium PG Connector
      • MongoDB → Debezium MongoDB Connector

典型应用场景

  1. 实时数仓同步:将OLTP数据实时写入数据湖(如Iceberg)或数仓(如ClickHouse)。
  2. 微服务解耦:通过CDC将数据库变更推送至Kafka,供下游服务消费。
  3. 多源异构同步:联合Flink SQL实现多数据库到统一目标的ETL。

总结

  • 日志解析模式是生产环境的首选方案,尤其在高吞吐、低延迟场景中。
  • Flink CDC生态持续扩展,已支持MySQL、PostgreSQL、Oracle等主流数据库。
相关推荐
永霖光电_UVLED5 分钟前
打造更优异的 UVB 激光器
大数据·制造·量子计算
m0_4665252910 分钟前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
晟诺数字人17 分钟前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
vx_biyesheji000121 分钟前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts
2501_9436953330 分钟前
高职大数据与会计专业,考CDA证后能转纯数据分析岗吗?
大数据·数据挖掘·数据分析
实时数据1 小时前
通过大数据的深度分析与精准营销策略,企业能够有效实现精准引流
大数据
子榆.1 小时前
CANN 性能分析与调优实战:使用 msprof 定位瓶颈,榨干硬件每一分算力
大数据·网络·人工智能
新芒2 小时前
暖通行业两位数下滑,未来靠什么赢?
大数据·人工智能
忆~遂愿2 小时前
CANN ATVOSS 算子库深度解析:基于 Ascend C 模板的 Vector 算子子程序化建模与融合优化机制
大数据·人工智能
艾莉丝努力练剑3 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法