flink的CDC 的种类

Flink CDC(Change Data Capture)的实现方式主要有以下两种类型:


1. 基于查询的增量同步

通过定期查询源数据库的增量数据(如时间戳字段、自增ID)实现变更捕获。

  • 适用场景:数据量较小、更新频率低的场景。
  • 特点
    • 实现简单,无需依赖数据库日志。
    • 可能对源数据库产生查询压力。
    • 无法捕获删除操作(需额外标记)。

2. 基于日志解析的实时同步

通过解析数据库的事务日志(如MySQL的binlog、PostgreSQL的WAL)捕获变更。

  • 主流方案:如Debezium + Flink的组合。
  • 特点
    • 实时性强:秒级延迟捕获增删改操作。
    • 低侵入性:不直接影响源数据库性能。
    • 完整性高 :支持INSERT/UPDATE/DELETE全量操作。
    • 典型工具
      • MySQL → Debezium MySQL Connector
      • PostgreSQL → Debezium PG Connector
      • MongoDB → Debezium MongoDB Connector

典型应用场景

  1. 实时数仓同步:将OLTP数据实时写入数据湖(如Iceberg)或数仓(如ClickHouse)。
  2. 微服务解耦:通过CDC将数据库变更推送至Kafka,供下游服务消费。
  3. 多源异构同步:联合Flink SQL实现多数据库到统一目标的ETL。

总结

  • 日志解析模式是生产环境的首选方案,尤其在高吞吐、低延迟场景中。
  • Flink CDC生态持续扩展,已支持MySQL、PostgreSQL、Oracle等主流数据库。
相关推荐
阿坤带你走近大数据10 分钟前
数据湖的构建实施方法论
大数据·数据湖·湖仓一体
安徽必海微马春梅_6688A17 分钟前
实验a 信息化集成化生物信号采集与处理系统
大数据·人工智能·深度学习·信号处理
焦糖玛奇朵婷21 分钟前
盲盒小程序:开发视角下的功能与体验
java·大数据·jvm·算法·小程序
野豹商业评论40 分钟前
千问App全球首发点外卖、买东西、订机票等AI购物功能
大数据·人工智能
yhdata1 小时前
2026年镍合金线行业产业链分析报告
大数据·人工智能
汇智信科2 小时前
智慧矿山和工业大数据解决方案“安全生产数据综合分析系统
大数据·人工智能·安全·智能算法·智慧矿山·工业大数据·汇智信科
雨大王5122 小时前
汽车工厂智能调度系统:自适应调度算法如何解决资源与任务匹配难题?
大数据·人工智能·汽车·制造
雨大王5122 小时前
缩短交付周期:汽车企业如何通过计划智能体实现高效协同?
大数据·人工智能·汽车·制造
专注数据的痴汉2 小时前
「数据获取」内蒙古地理基础数据(道路、水系、四级行政边界、地级城市、DEM等)
大数据·人工智能·信息可视化
YangYang9YangYan3 小时前
2026大专大数据专业学习数据分析的价值与应用
大数据·学习·数据分析