- 设 X k = [ x 1 x 2 ... x k ] X_k = [x_1\ x_2\ \dots\ x_k] Xk=[x1 x2 ... xk], G k = X k X k T G_k = X_k X_k^T Gk=XkXkT。当新向量 x k + 1 x_{k+1} xk+1 到达时,计算 G k + 1 = X k + 1 X k + 1 T G_{k+1} = X_{k+1} X_{k+1}^T Gk+1=Xk+1Xk+1T(其中 X k + 1 = [ X k x k + 1 ] X_{k+1} = [X_k\ x_{k+1}] Xk+1=[Xk xk+1])的列行展开,并说明如何从 G k G_k Gk 计算 G k + 1 G_{k+1} Gk+1。
解答 :
G k G_k Gk 的列行展开为:
G k = X k X k T = ∑ i = 1 k col i ( X k ) row i ( X k T ) = ∑ i = 1 k x i x i T G_k = X_k X_k^T = \sum_{i=1}^k \text{col}_i(X_k) \text{row}i(X_k^T) = \sum{i=1}^k x_i x_i^T Gk=XkXkT=i=1∑kcoli(Xk)rowi(XkT)=i=1∑kxixiT
当 x k + 1 x_{k+1} xk+1 到达时, X k + 1 = [ X k x k + 1 ] X_{k+1} = [X_k\ x_{k+1}] Xk+1=[Xk xk+1],故:
G k + 1 = X k + 1 X k + 1 T = [ X k x k + 1 ] [ X k T x k + 1 T ] = X k X k T + x k + 1 x k + 1 T = G k + x k + 1 x k + 1 T \begin{align*} G_{k+1} &= X_{k+1} X_{k+1}^T \\ &= [X_k\ x_{k+1}] \begin{bmatrix} X_k^T \\ x_{k+1}^T \end{bmatrix} \\ &= X_k X_k^T + x_{k+1} x_{k+1}^T \\ &= G_k + x_{k+1} x_{k+1}^T \end{align*} Gk+1=Xk+1Xk+1T=[Xk xk+1][XkTxk+1T]=XkXkT+xk+1xk+1T=Gk+xk+1xk+1T
列行展开验证:
G k + 1 = ∑ i = 1 k + 1 col i ( X k + 1 ) row i ( X k + 1 T ) = ∑ i = 1 k col i ( X k ) row i ( X k T ) + col k + 1 ( X k + 1 ) row k + 1 ( X k + 1 T ) = G k + x k + 1 x k + 1 T \begin{align*} G_{k+1} &= \sum_{i=1}^{k+1} \text{col}i(X{k+1}) \text{row}i(X{k+1}^T) \\ &= \sum_{i=1}^k \text{col}i(X_k) \text{row}i(X_k^T) + \text{col}{k+1}(X{k+1}) \text{row}{k+1}(X{k+1}^T) \\ &= G_k + x_{k+1} x_{k+1}^T \end{align*} Gk+1=i=1∑k+1coli(Xk+1)rowi(Xk+1T)=i=1∑kcoli(Xk)rowi(XkT)+colk+1(Xk+1)rowk+1(Xk+1T)=Gk+xk+1xk+1T
结论 :
从 G k G_k Gk 计算 G k + 1 G_{k+1} Gk+1 的公式为 G k + 1 = G k + x k + 1 x k + 1 T G_{k+1} = G_k + x_{k+1} x_{k+1}^T Gk+1=Gk+xk+1xk+1T。
- a. 证明 A 2 = I A^2 = I A2=I,其中 A = [ 1 0 3 − 1 ] A = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} A=[130−1]。
b. 利用分块矩阵证明 M 2 = I M^2 = I M2=I,其中 M = [ 1 0 0 0 3 − 1 0 0 1 0 − 1 0 0 1 − 3 1 ] M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & 1 \end{bmatrix} M= 13100−10100−1−30001 。
解答 :
a. 直接计算 A 2 A^2 A2:
A 2 = [ 1 0 3 − 1 ] [ 1 0 3 − 1 ] = [ 1 ⋅ 1 + 0 ⋅ 3 1 ⋅ 0 + 0 ⋅ ( − 1 ) 3 ⋅ 1 + ( − 1 ) ⋅ 3 3 ⋅ 0 + ( − 1 ) ⋅ ( − 1 ) ] = [ 1 0 0 1 ] = I A^2 = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 0 \cdot 3 & 1 \cdot 0 + 0 \cdot (-1) \\ 3 \cdot 1 + (-1) \cdot 3 & 3 \cdot 0 + (-1) \cdot (-1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I A2=[130−1][130−1]=[1⋅1+0⋅33⋅1+(−1)⋅31⋅0+0⋅(−1)3⋅0+(−1)⋅(−1)]=[1001]=I
b. 将 M M M 分块为 [ A 0 I − A ] \begin{bmatrix} A & 0 \\ I & -A \end{bmatrix} [AI0−A],其中 A = [ 1 0 3 − 1 ] A = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} A=[130−1], I I I 是 2 × 2 2 \times 2 2×2 单位矩阵。
计算 M 2 M^2 M2:
M 2 = [ A 0 I − A ] [ A 0 I − A ] = [ A ⋅ A + 0 ⋅ I A ⋅ 0 + 0 ⋅ ( − A ) I ⋅ A + ( − A ) ⋅ I I ⋅ 0 + ( − A ) ⋅ ( − A ) ] = [ A 2 0 A − A A 2 ] M^2 = \begin{bmatrix} A & 0 \\ I & -A \end{bmatrix}\begin{bmatrix} A & 0 \\ I & -A \end{bmatrix} = \begin{bmatrix} A \cdot A + 0 \cdot I & A \cdot 0 + 0 \cdot (-A) \\ I \cdot A + (-A) \cdot I & I \cdot 0 + (-A) \cdot (-A) \end{bmatrix} = \begin{bmatrix} A^2 & 0 \\ A - A & A^2 \end{bmatrix} M2=[AI0−A][AI0−A]=[A⋅A+0⋅II⋅A+(−A)⋅IA⋅0+0⋅(−A)I⋅0+(−A)⋅(−A)]=[A2A−A0A2]
由 a 部分知 A 2 = I A^2 = I A2=I,且 A − A = 0 A - A = 0 A−A=0,故:
M 2 = [ I 0 0 I ] = I M^2 = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} = I M2=[I00I]=I
结论 :
a. A 2 = I A^2 = I A2=I 成立。
b. M 2 = I M^2 = I M2=I 成立。
- 推广习题21(a)的思想,构造一个5×5矩阵 M = [ A 0 C D ] M = \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} M=[AC0D],使得 M 2 = I M^2 = I M2=I。令 C C C 是2×3非零矩阵,验证你构造的矩阵满足要求。
解答 :
设 M = [ I 3 0 C − I 2 ] M = \begin{bmatrix} I_3 & 0 \\ C & -I_2 \end{bmatrix} M=[I3C0−I2],其中 I 3 I_3 I3 是 3 × 3 3 \times 3 3×3 单位矩阵, I 2 I_2 I2 是 2 × 2 2 \times 2 2×2 单位矩阵, C C C 是任意 2 × 3 2 \times 3 2×3 非零矩阵。
计算 M 2 M^2 M2:
M 2 = [ I 3 0 C − I 2 ] [ I 3 0 C − I 2 ] = [ I 3 ⋅ I 3 + 0 ⋅ C I 3 ⋅ 0 + 0 ⋅ ( − I 2 ) C ⋅ I 3 + ( − I 2 ) ⋅ C C ⋅ 0 + ( − I 2 ) ⋅ ( − I 2 ) ] M^2 = \begin{bmatrix} I_3 & 0 \\ C & -I_2 \end{bmatrix}\begin{bmatrix} I_3 & 0 \\ C & -I_2 \end{bmatrix} = \begin{bmatrix} I_3 \cdot I_3 + 0 \cdot C & I_3 \cdot 0 + 0 \cdot (-I_2) \\ C \cdot I_3 + (-I_2) \cdot C & C \cdot 0 + (-I_2) \cdot (-I_2) \end{bmatrix} M2=[I3C0−I2][I3C0−I2]=[I3⋅I3+0⋅CC⋅I3+(−I2)⋅CI3⋅0+0⋅(−I2)C⋅0+(−I2)⋅(−I2)]
简化得:
M 2 = [ I 3 0 C − C I 2 ] = [ I 3 0 0 I 2 ] = I 5 M^2 = \begin{bmatrix} I_3 & 0 \\ C - C & I_2 \end{bmatrix} = \begin{bmatrix} I_3 & 0 \\ 0 & I_2 \end{bmatrix} = I_5 M2=[I3C−C0I2]=[I300I2]=I5
其中 C − C = 0 C - C = 0 C−C=0 且 ( − I 2 ) ( − I 2 ) = I 2 (-I_2)(-I_2) = I_2 (−I2)(−I2)=I2。
结论 :
矩阵 M = [ I 3 0 C − I 2 ] M = \begin{bmatrix} I_3 & 0 \\ C & -I_2 \end{bmatrix} M=[I3C0−I2] 满足 M 2 = I 5 M^2 = I_5 M2=I5,其中 C C C 为任意 2 × 3 2 \times 3 2×3 矩阵。
- 应用分块矩阵和归纳法证明所有下三角矩阵的乘积仍然是下三角矩阵。
解答 :
基础步骤( n = 1 n=1 n=1) :
1×1 下三角矩阵是标量,其乘积仍是标量,自然为下三角矩阵。
归纳假设 :
假设对 n = k n=k n=k,任意两个 k × k k \times k k×k 下三角矩阵的乘积仍是下三角矩阵。
归纳步骤( n = k + 1 n=k+1 n=k+1) :
设 A 1 , B 1 A_1, B_1 A1,B1 为 ( k + 1 ) × ( k + 1 ) (k+1) \times (k+1) (k+1)×(k+1) 下三角矩阵,分块为:
A 1 = [ a 0 T v A ] , B 1 = [ b 0 T w B ] A_1 = \begin{bmatrix} a & 0^T \\ v & A \end{bmatrix}, \quad B_1 = \begin{bmatrix} b & 0^T \\ w & B \end{bmatrix} A1=[av0TA],B1=[bw0TB]
其中 a , b a, b a,b 为标量, v , w ∈ R k v, w \in \mathbb{R}^k v,w∈Rk, A , B A, B A,B 为 k × k k \times k k×k 下三角矩阵。
计算乘积:
A 1 B 1 = [ a 0 T v A ] [ b 0 T w B ] = [ a b + 0 T w a 0 T + 0 T B v b + A w v 0 T + A B ] = [ a b 0 T b v + A w A B ] A_1B_1 = \begin{bmatrix} a & 0^T \\ v & A \end{bmatrix}\begin{bmatrix} b & 0^T \\ w & B \end{bmatrix} = \begin{bmatrix} ab + 0^Tw & a0^T + 0^TB \\ vb + Aw & v0^T + AB \end{bmatrix} = \begin{bmatrix} ab & 0^T \\ bv + Aw & AB \end{bmatrix} A1B1=[av0TA][bw0TB]=[ab+0Twvb+Awa0T+0TBv0T+AB]=[abbv+Aw0TAB]
- a b ab ab 是标量(左上角元素)
- 0 T 0^T 0T 表明右上部分为零向量
- A B AB AB 是 k × k k \times k k×k 下三角矩阵(由归纳假设)
- b v + A w bv + Aw bv+Aw 是 R k \mathbb{R}^k Rk 中的向量
因此, A 1 B 1 A_1B_1 A1B1 是 ( k + 1 ) × ( k + 1 ) (k+1) \times (k+1) (k+1)×(k+1) 下三角矩阵。
结论 :
由数学归纳法,对任意 n ≥ 1 n \geq 1 n≥1,下三角矩阵的乘积仍是下三角矩阵。
- 应用分块矩阵证明当 n = 2 , 3 , ... n = 2,3,\dots n=2,3,... 时,下面的 n × n n \times n n×n 矩阵 A A A 是可逆的,其逆为 B B B:
A = [ 1 0 0 ⋯ 0 1 1 0 ⋯ 0 1 1 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 1 1 1 ⋯ 1 ] , B = [ 1 0 0 ⋯ 0 − 1 1 0 ⋯ 0 0 − 1 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 ] A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} A= 111⋮1011⋮1001⋮1⋯⋯⋯⋱⋯000⋮1 ,B= 1−10⋮001−1⋮0001⋮0⋯⋯⋯⋱⋯000⋮1
解答 :
基础步骤( n = 2 n=2 n=2) :
直接计算:
A 2 B 2 = [ 1 0 1 1 ] [ 1 0 − 1 1 ] = [ 1 0 0 1 ] = I 2 A_2B_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 A2B2=[1101][1−101]=[1001]=I2
归纳假设 :
假设对 n = k n=k n=k, A k B k = I k A_kB_k = I_k AkBk=Ik 成立。
归纳步骤( n = k + 1 n=k+1 n=k+1) :
将 A k + 1 , B k + 1 A_{k+1}, B_{k+1} Ak+1,Bk+1 分块为:
A k + 1 = [ 1 0 T v A k ] , B k + 1 = [ 1 0 T w B k ] A_{k+1} = \begin{bmatrix} 1 & 0^T \\ v & A_k \end{bmatrix}, \quad B_{k+1} = \begin{bmatrix} 1 & 0^T \\ w & B_k \end{bmatrix} Ak+1=[1v0TAk],Bk+1=[1w0TBk]
其中 v T = [ 1 1 ⋯ 1 ] v^T = [1\ 1\ \cdots\ 1] vT=[1 1 ⋯ 1]( k k k 个1), w T = [ − 1 0 ⋯ 0 ] w^T = [-1\ 0\ \cdots\ 0] wT=[−1 0 ⋯ 0]。
计算乘积:
A k + 1 B k + 1 = [ 1 0 T v A k ] [ 1 0 T w B k ] = [ 1 + 0 T w 0 T + 0 T B k v + A k w v 0 T + A k B k ] A_{k+1}B_{k+1} = \begin{bmatrix} 1 & 0^T \\ v & A_k \end{bmatrix}\begin{bmatrix} 1 & 0^T \\ w & B_k \end{bmatrix} = \begin{bmatrix} 1 + 0^Tw & 0^T + 0^TB_k \\ v + A_kw & v0^T + A_kB_k \end{bmatrix} Ak+1Bk+1=[1v0TAk][1w0TBk]=[1+0Twv+Akw0T+0TBkv0T+AkBk]
- 0 T w = 0 0^Tw = 0 0Tw=0(因 w T w^T wT 仅首元素非零)
- A k w = − v A_kw = -v Akw=−v(因 A k A_k Ak 的第一列为 v v v, w w w 使第一列乘以-1)
- A k B k = I k A_kB_k = I_k AkBk=Ik(归纳假设)
因此:
A k + 1 B k + 1 = [ 1 0 T 0 I k ] = I k + 1 A_{k+1}B_{k+1} = \begin{bmatrix} 1 & 0^T \\ 0 & I_k \end{bmatrix} = I_{k+1} Ak+1Bk+1=[100TIk]=Ik+1
结论 :
由数学归纳法, A n B n = I n A_nB_n = I_n AnBn=In 对所有 n ≥ 2 n \geq 2 n≥2 成立,故 A A A 可逆且 B = A − 1 B = A^{-1} B=A−1。
- 不使用行化简,求矩阵 A = [ 1 2 0 0 0 3 5 0 0 0 0 0 2 0 0 0 0 0 7 8 0 0 0 5 6 ] A = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 3 & 5 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 5 & 6 \end{bmatrix} A= 1300025000002000007500086 的逆。
解答 :
将 A A A 分块为 2 × 2 2 \times 2 2×2 块对角矩阵:
A = [ A 11 0 0 A 22 ] , 其中 A 11 = [ 1 2 3 5 ] , A 22 = [ 2 0 0 0 7 8 0 5 6 ] A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}, \quad \text{其中} \quad A_{11} = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 7 & 8 \\ 0 & 5 & 6 \end{bmatrix} A=[A1100A22],其中A11=[1325],A22= 200075086
进一步将 A 22 A_{22} A22 分块为:
A 22 = [ 2 0 0 B ] , 其中 B = [ 7 8 5 6 ] A_{22} = \begin{bmatrix} 2 & 0 \\ 0 & B \end{bmatrix}, \quad \text{其中} \quad B = \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix} A22=[200B],其中B=[7586]
-
计算 A 11 − 1 A_{11}^{-1} A11−1 :
A 11 − 1 = 1 det ( A 11 ) [ 5 − 2 − 3 1 ] = [ − 5 2 3 − 1 ] A_{11}^{-1} = \frac{1}{\det(A_{11})}\begin{bmatrix} 5 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} A11−1=det(A11)1[5−3−21]=[−532−1] -
计算 B − 1 B^{-1} B−1 :
B − 1 = 1 det ( B ) [ 6 − 8 − 5 7 ] = [ 3 − 4 − 2.5 3.5 ] B^{-1} = \frac{1}{\det(B)}\begin{bmatrix} 6 & -8 \\ -5 & 7 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -2.5 & 3.5 \end{bmatrix} B−1=det(B)1[6−5−87]=[3−2.5−43.5] -
计算 A 22 − 1 A_{22}^{-1} A22−1 :
由块对角矩阵性质:
A 22 − 1 = [ 2 − 1 0 0 B − 1 ] = [ 0.5 0 0 0 3 − 4 0 − 2.5 3.5 ] A_{22}^{-1} = \begin{bmatrix} 2^{-1} & 0 \\ 0 & B^{-1} \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 3 & -4 \\ 0 & -2.5 & 3.5 \end{bmatrix} A22−1=[2−100B−1]= 0.50003−2.50−43.5 -
计算 A − 1 A^{-1} A−1 :
由块对角矩阵性质:
A − 1 = [ A 11 − 1 0 0 A 22 − 1 ] = [ − 5 2 0 0 0 3 − 1 0 0 0 0 0 0.5 0 0 0 0 0 3 − 4 0 0 0 − 2.5 3.5 ] A^{-1} = \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{bmatrix} = \begin{bmatrix} -5 & 2 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & -2.5 & 3.5 \end{bmatrix} A−1=[A11−100A22−1]= −530002−1000000.5000003−2.5000−43.5
结论 :
A − 1 = [ − 5 2 0 0 0 3 − 1 0 0 0 0 0 0.5 0 0 0 0 0 3 − 4 0 0 0 − 2.5 3.5 ] A^{-1} = \begin{bmatrix} -5 & 2 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & -2.5 & 3.5 \end{bmatrix} A−1= −530002−1000000.5000003−2.5000−43.5
!CAUTION
分块对角矩阵的逆矩阵性质
设 A 是一个分块对角矩阵,具有如下形式:
A = [ A 11 0 ⋯ 0 0 A 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ A k k ] A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{kk} \end{bmatrix} A= A110⋮00A22⋮0⋯⋯⋱⋯00⋮Akk
其中每个子块 A_{ii} ( ( ( i = 1, 2, \\dots, k )均为可逆的方阵。
性质
若上述条件满足,则 A 可逆,且其逆矩阵为:
A − 1 = [ A 11 − 1 0 ⋯ 0 0 A 22 − 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ A k k − 1 ] A^{-1} = \begin{bmatrix} A_{11}^{-1} & 0 & \cdots & 0 \\ 0 & A_{22}^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{kk}^{-1} \end{bmatrix} A−1= A11−10⋮00A22−1⋮0⋯⋯⋱⋯00⋮Akk−1
说明
- 该性质表明:分块对角矩阵的逆等于各对角块的逆组成的分块对角矩阵。
- 此结论可推广至任意数量的对角块。
- 每个子块必须是方阵且可逆,否则 A 不可逆。
应用价值
- 简化大型矩阵求逆的计算;
- 广泛应用于数值线性代数、控制系统、统计学和优化等领域。