扩散模型详解:从DDPM到Stable Diffusion再到DiT的技术演进

1.摘要

扩散模型(Diffusion Models)作为当前最热门的生成模型之一,已彻底改变图像生成领域,本文从DDPM开始,逐步深入到Stable Diffusion和DiT架构。

扩散模型就像是一个"破坏-修复"的过程,想象一下你有一张美丽的图片,然后一点点地给它加上噪声,直到完全看不清原来的图片,然后让AI学会如何一步步把噪声去掉,重新还原出原始图片。这就是扩散模型的基本思路。


2. DDPM:扩散模型的奠基之作(2020年)

2.1 什么是DDPM?

DDPM(Denoising Diffusion Probabilistic Models)是扩散模型的开山鼻祖,由OpenAI团队在2020年提出,它的工作原理:

前向过程(加噪声) :从一张清晰的图片开始,逐步添加噪声,最终变成完全随机的噪声图。 反向过程(去噪声):训练AI学会如何一步步去除噪声,从随机噪声中重建出原始图片。

2.2 DDPM的模型结构详解

DDPM的核心是一个U-Net网络结构,U-Net详细架构如下图:

2.3 训练过程

DDPM需要训练很多轮次,每次告诉AI:"这是加了噪声的图片,这是原始图片,请你学会如何从噪声中恢复原图"。经过大量训练后,AI就学会了去噪技能。

2.4 推理过程

推理时,AI从完全随机的噪声开始,一步步"想象"出完整的图片。这个过程通常需要几十到几百步才能完成。

2.5 DDPM的特点

  • 优点:生成质量高,理论基础扎实
  • 缺点:训练和推理都很慢,通常需要1000步才能生成一张图片
  • 应用场景:学术研究,为后续模型提供理论基础

3. Stable Diffusion:实用化的突破(2022年)

3.1 为什么需要Stable Diffusion?

DDPM虽然效果不错,但有个致命缺点:计算成本太高!一张512×512的图片需要在像素级别上进行扩散,计算量巨大。2022年,Stable Diffusion横空出世,解决了这个问题。

3.2 Stable Diffusion的创新

Stable Diffusion最大的创新是潜在空间扩散

  • 传统方法:直接在原始图像空间(如512×512像素)进行扩散
  • Stable Diffusion:先将图像压缩到潜在空间(如64×64),在潜在空间进行扩散,最后再解压回原空间

这样计算量减少了约16倍,使得扩散模型变得实用起来。

3.3 文本到图像生成

Stable Diffusion另一个重要特性是支持文本到图像生成:

  • 使用CLIP模型将文本转换为语义向量
  • 在扩散过程中加入文本条件,指导图像生成
  • 用户可以通过文字描述生成想要的图片

3.4 Stable Diffusion的意义

  • 实用性强:可以在普通GPU上运行
  • 开源免费:推动了AI绘画的普及
  • 生态丰富:大量社区模型和插件

3. Stable Diffusion:实用化的突破(2022年)

3.1 为什么需要Stable Diffusion?

DDPM虽然效果不错,但有个致命缺点:计算成本太高!一张512×512的图片需要在像素级别上进行扩散,计算量巨大。2022年,Stable Diffusion横空出世,解决了这个问题。

3.2 Stable Diffusion的创新

Stable Diffusion最大的创新是潜在空间扩散

  • 传统方法:直接在原始图像空间(如512×512像素)进行扩散
  • Stable Diffusion:先将图像压缩到潜在空间(如64×64),在潜在空间进行扩散,最后再解压回原空间

这样计算量减少了约16倍,使得扩散模型变得实用起来。

3.3 文本到图像生成

Stable Diffusion另一个重要特性是支持文本到图像生成:

  • 使用CLIP模型将文本转换为语义向量
  • 在扩散过程中加入文本条件,指导图像生成
  • 用户可以通过文字描述生成想要的图片

3.4 Stable Diffusion的意义

  • 实用性强:可以在普通GPU上运行
  • 开源免费:推动了AI绘画的普及
  • 生态丰富:大量社区模型和插件

4. DiT:拥抱Transformer时代(2023年)

4.1 为什么用Transformer?

随着Transformer在NLP领域的巨大成功,研究者们开始思考:能否用Transformer来改进扩散模型?2023年,DiT(Diffusion Transformer)应运而生,将纯Transformer架构引入扩散模型。

4.2 DiT的创新点

架构革新

  • 用Transformer替换传统的CNN架构
  • 采用纯Transformer的骨干网络
  • 更好的可扩展性和并行化能力

性能提升

  • 大模型展现更好的生成质量
  • 训练稳定性显著提高
  • 可扩展性更强

4.3 DiT vs 传统方法

特性 传统UNet DiT
架构 CNN Transformer
可扩展性 中等 很好
训练稳定性 一般 很好
全局建模 需要多层 天然全局

5. 扩散模型发展时间线

2020年 - DDPM:奠定扩散模型理论基础

2021年 - Improved DDPM:各种改进和优化

2022年 - Stable Diffusion:实用化突破,潜在空间扩散

2023年 - DiT:Transformer架构,可扩展性大幅提升

2024年至今 - 各种变体和优化:蒸馏、量化、多模态等

5.1 技术演进路径

  • DDPM (2020):基础理论,像素级扩散,计算成本高
  • Latent Diffusion (2022):潜在空间扩散,大幅降低计算成本
  • DiT (2023):Transformer架构,更好的可扩展性

5.2 DIT和Stable Diffusion模型区别

Stable Diffusion

  • 架构:U-Net + 卷积神经网络
  • 特点:在潜在空间工作,计算效率高
  • 优势:成熟稳定,生态完善
  • 缺点:架构相对传统,扩展性有限

DiT (Diffusion Transformer)

  • 架构:纯Transformer架构
  • 特点:将扩散过程完全用Transformer处理
  • 优势:更好的扩展性,更容易scale up
  • 缺点:计算量更大,需要更多资源

DiT参考了Stable Diffusion的思想,借鉴了扩散模型的基本框架,但将传统的U-Net架构替换为Transformer架构,这是架构层面的重大革新。

注:Stable Diffusion 就是 Latent Diffusion 的一个具体实现,Stable Diffusion = Latent Diffusion + 文本条件 + 稳定性优化

5.3 VIT模型和DIT模型关系

DiT是ViT思想在生成领域的成功应用,为什么这么说呢?DIT参考了ViT的思路将扩散模型由U-Net改用Transformer。

ViT (Vision Transformer, 2020年)

  • 开创性工作:将Transformer架构首次成功应用于图像识别
  • 基本思路:把图像切成小块(patch),当作"单词"输入Transformer
  • 主要应用:图像分类任务

DiT (Diffusion Transformer, 2022年底)

  • 继承关系:基于ViT的成功经验,将Transformer应用于扩散模型
  • 核心创新:用Transformer替换传统的U-Net架构
  • 主要应用:图像生成任务

相同点

  1. 都使用Transformer架构
  2. 都采用patch处理方式
  3. 都利用自注意力机制
  4. 都有良好的扩展性

不同点

方面 ViT DiT
任务类型 图像分类 图像生成
输入 静态图像 噪声 + 时间步长
输出 分类标签 去噪后的图像
核心 特征提取 扩散过程建模

ViT优势

  • 在分类任务上表现优异
  • 训练相对简单
  • 计算效率高

DiT优势

  • 在生成任务上表现更好
  • 扩展性更强
  • 生成质量更高

6. 当前业界主流扩散模型

6.1 开源模型系列

Stable Diffusion系列

  • Stable Diffusion 1.x (2022):最初的版本,奠定了基础架构
  • Stable Diffusion 2.x (2022):改进了CLIP模型,支持更大的图像尺寸
  • Stable Diffusion XL (SDXL, 2023):更大的模型,更高的图像质量
  • Stable Diffusion 3 (2024):最新的版本,进一步提升了生成质量

其他开源模型

  • DALL-E系列:OpenAI的文本到图像模型
  • Imagen:Google的高质量扩散模型

6.2 不同场景的选择

学术研究

  • DDPM:理解扩散模型基础
  • DiT:探索Transformer架构

商业应用

  • SDXL:平衡质量与效率
  • 定制化模型:根据具体需求调整

6.3 当前主流(2024-2025年)

  1. Midjourney系列 - 基于改进的扩散模型
  2. DALL-E 3 - 结合多种技术的混合模型
  3. Stable Diffusion XL (SDXL) - SD的升级版
  4. Runway、Leonardo等平台 - 基于各种扩散模型变体

6.4 具体领域

  • AI绘画:主要是Stable Diffusion变体 + 各家自研改进
  • AI漫画:专门针对动漫风格优化的SD模型
  • 商业应用:多基于Stable Diffusion开源生态

6.5 趋势变化

  • 早期:Stable Diffusion为主流
  • 现在:各大公司都在基于扩散模型开发私有模型
  • 未来:DiT等Transformer架构可能成为新趋势

目前大多数应用仍基于Stable Diffusion生态,但高端应用开始采用DiT等新架构。未来可能会逐步向Transformer架构迁移。


7. 总结

扩散模型的发展历程体现了AI领域的快速迭代:

  • DDPM (2020):奠定了理论基础,但计算成本高
  • Stable Diffusion (2022):实现了实用化突破,潜在空间扩散
  • DiT (2023):开启了Transformer时代,更好的可扩展性

这些模型不仅在技术上不断创新,也在实际应用中产生了巨大影响,从学术研究到商业产品,扩散模型正在重塑我们创造和处理视觉内容的方式。

相关推荐
Blossom.1185 小时前
基于MLOps+LLM的模型全生命周期自动化治理系统:从数据漂移到智能回滚的落地实践
运维·人工智能·学习·决策树·stable diffusion·自动化·音视频
java1234_小锋17 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 掩码机制(Masked)原理介绍以及算法实现
深度学习·语言模型·transformer
范男20 小时前
Qwen3-VL + LLama-Factory进行针对Grounding任务LoRA微调
人工智能·深度学习·计算机视觉·transformer·llama
霖大侠1 天前
VISION TRANSFORMER ADAPTER FOR DENSE PREDICTIONS
人工智能·深度学习·transformer
高洁011 天前
向量数据库拥抱大模型
python·深度学习·算法·机器学习·transformer
_codemonster1 天前
AI大模型入门到实战系列(四)深入理解 Transformer 大语言模型
人工智能·语言模型·transformer
做cv的小昊1 天前
VLM相关论文阅读:【LoRA】Low-rank Adaptation of Large Language Models
论文阅读·人工智能·深度学习·计算机视觉·语言模型·自然语言处理·transformer
盼小辉丶1 天前
Transformer实战(30)——Transformer注意力机制可视化
深度学习·transformer·可解释人工智能
云雾J视界2 天前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理