SmoothDiscreteMarchingCubes 多边形网格数据的平滑

一:主要的知识点

1、说明

本文只是教程内容的一小段,因博客字数限制,故进行拆分。主教程链接:vtk教程------逐行解析官网所有Python示例-CSDN博客

2、知识点纪要

本段代码主要涉及的有①vtkSampleFunction函数采样器,②vtkWindowedSincPolyDataFilter 多边形网格的平滑滤波器

二:代码及注释

python 复制代码
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkLookupTable, vtkMinimalStandardRandomSequence
from vtkmodules.vtkCommonDataModel import vtkImageData, vtkSphere
from vtkmodules.vtkFiltersCore import vtkWindowedSincPolyDataFilter
from vtkmodules.vtkFiltersGeneral import vtkDiscreteMarchingCubes
from vtkmodules.vtkImagingCore import vtkImageThreshold
from vtkmodules.vtkImagingHybrid import vtkSampleFunction
from vtkmodules.vtkImagingMath import vtkImageMathematics
from vtkmodules.vtkRenderingCore import (
    vtkActor,
    vtkPolyDataMapper,
    vtkRenderWindow,
    vtkRenderWindowInteractor,
    vtkRenderer
)
 
 
def main():
    n = 20
    radius = 8
 
    max_r = 50 - 2.0 * radius
    blob_image = vtkImageData()
    random_sequence = vtkMinimalStandardRandomSequence()
    random_sequence.SetSeed(5071)
    for i in range(0, n):
        sphere = vtkSphere()
        x = random_sequence.GetRangeValue(-max_r, max_r)
        random_sequence.Next()
        y = random_sequence.GetRangeValue(-max_r, max_r)
        random_sequence.Next()
        z = random_sequence.GetRangeValue(-max_r, max_r)
        random_sequence.Next()
 
        sphere.SetCenter(int(x), int(y), int(z))
 
        """
        vtkSampleFunction 
        创建一个 函数采样器,它会在一个三维规则网格里对隐函数(比如球、平面、布尔组合)进行采样,
        生成 vtkImageData 格式的体数据
        
        指定要采样的隐函数,这里是一个 vtkSphere
        隐函数的规则是:
            点在球面上 → 函数值 = 0
            点在球内 → 函数值 < 0
            点在球外 → 函数值 > 0
        如果设置的隐函数是一个平面呢?
            在平面上:值 = 0
            在平面的一边:值 = 正数   
            在另一边:值 = 负数
        """
        sampler = vtkSampleFunction()
        sampler.SetImplicitFunction(sphere)
        sampler.SetOutputScalarTypeToFloat()
        sampler.SetModelBounds(-50, 50, -50, 50, -50, 50)
        sampler.SetSampleDimensions(100, 100, 100)
 
        thres = vtkImageThreshold()
        thres.SetInputConnection(sampler.GetOutputPort())
        thres.ThresholdByLower(radius * radius)
        """
        SetInValue(i+1) 所有符合阈值条件的(即球体内部的)体素值替换为当前的循环索引 i 加 1
        SetOutValue(0):将所有不符合阈值条件的(即球体外部的)体素值替换为0
        """
        thres.SetInValue(i + 1)
        thres.SetOutValue(0)
        """
        ReplaceInOn() 启用对符合阈值条件的体素的替换
        ReplaceOutOn() 启用对不符合阈值条件的体素的替换
        """
        thres.ReplaceInOn()
        thres.ReplaceOutOn()
        """
        启用对符合阈值条件的体素的替换
        """
        thres.Update()
 
        if i == 0:
            blob_image.DeepCopy(thres.GetOutput())
 
        """
        图像的体素级操作
        """
        max_value = vtkImageMathematics()
        max_value.SetInputData(0, blob_image)
        max_value.SetInputData(1, thres.GetOutput())
        max_value.SetOperationToMax()
        max_value.Modified()
        max_value.Update()
 
        blob_image.DeepCopy(max_value.GetOutput())
 
    discrete = vtkDiscreteMarchingCubes()
    discrete.SetInputData(blob_image)
    discrete.GenerateValues(n, 1, n)
 
    smoothing_iterations = 15
    pass_band = 0.01
    feature_angle = 120.0
 
    """
    vtkWindowedSincPolyDataFilter 多边形网格的平滑滤波器
    普通的平滑算法(比如 vtkSmoothPolyDataFilter,基于 Laplacian 平滑)在迭代多次后,会让模型逐渐 变小,因为顶点会不断往邻居点的"平均位置"收缩。
    而 vtkWindowedSincPolyDataFilter 使用频域滤波的思想,通过 Sinc 函数 + 窗口函数来控制平滑程度,使得模型不会过度收缩,同时还能去掉高频噪声
    """
    smoother = vtkWindowedSincPolyDataFilter()
    smoother.SetInputConnection(discrete.GetOutputPort())
    smoother.SetNumberOfIterations(smoothing_iterations)
    smoother.BoundarySmoothingOff()  # 是否对边界也进行平滑
    smoother.SetFeatureAngle(feature_angle)
    smoother.FeatureEdgeSmoothingOff()  # 是否允许锐利特征边界被平滑
    """
    设置滤波器的通带宽度(0~2之间的浮点数),值越小平滑越强
    """
    smoother.SetPassBand(pass_band)
    """
    NonManifoldSmoothingOn  对非流行网格也进行平滑
    """
    smoother.NonManifoldSmoothingOn()
    """
    NormalizeCoordinatesOn  
    启用后,滤波器会 在内部把坐标归一化到一个标准范围([-1,1] 或 [0,1] 之类的范围) 再进行计算,
    最后再还原回原始范围
    """
    smoother.Update()
 
    lut = vtkLookupTable()
    lut.SetNumberOfColors(n)
    lut.SetTableRange(0, n - 1)
    lut.SetRampToLinear()
    lut.Build()  # 构建查找表
    lut.SetTableValue(0, 0, 0, 0, 1)  # 设置索引为0的颜色值为纯黑色+不透明
    for i in range(1, n):
        r = random_sequence.GetRangeValue(0.4, 1)
        random_sequence.Next()
        g = random_sequence.GetRangeValue(0.4, 1)
        random_sequence.Next()
        b = random_sequence.GetRangeValue(0.4, 1)
        random_sequence.Next()
        lut.SetTableValue(i, r, g, b, 1.0)
 
    mapper = vtkPolyDataMapper()
    mapper.SetInputConnection(smoother.GetOutputPort())
    mapper.SetLookupTable(lut)
    mapper.SetScalarRange(0, lut.GetNumberOfColors())
 
    ren = vtkRenderer()
    ren_win = vtkRenderWindow()
    ren_win.AddRenderer(ren)
    ren_win.SetWindowName('SmoothDiscreteMarchingCubes')
 
    iren = vtkRenderWindowInteractor()
    iren.SetRenderWindow(ren_win)
 
    actor = vtkActor()
    actor.SetMapper(mapper)
 
    ren.AddActor(actor)
 
    colors = vtkNamedColors()
    ren.SetBackground(colors.GetColor3d('Burlywood'))
 
    ren_win.Render()
 
    iren.Start()
 
if __name__ == '__main__':
    main()
相关推荐
一个无名的炼丹师7 小时前
GraphRAG深度解析:从原理到实战,重塑RAG检索增强生成的未来
人工智能·python·rag
用户8356290780517 小时前
用Python轻松管理Word页脚:批量处理与多节文档技巧
后端·python
进击的松鼠7 小时前
LangChain 实战 | 快速搭建 Python 开发环境
python·langchain·llm
小北方城市网7 小时前
第1课:架构设计核心认知|从0建立架构思维(架构系列入门课)
大数据·网络·数据结构·python·架构·数据库架构
我的offer在哪里8 小时前
Hugging Face:让大模型触手可及的魔法工厂
人工智能·python·语言模型·开源·ai编程
汤姆yu8 小时前
基于python大数据的协同过滤音乐推荐系统
大数据·开发语言·python
爱学习的小道长8 小时前
Python Emoji库的使用教程
开发语言·python
Data_agent8 小时前
Cssbuy 模式淘宝 / 1688 代购系统南美市场搭建指南
大数据·python
xyt11722281779 小时前
宗地四至提取工具
python·arcgis
程序员三藏9 小时前
接口自动化测试之 pytest 接口关联框架封装
自动化测试·软件测试·python·测试工具·测试用例·pytest·接口测试