【强化学习实验】- 策略梯度算法

1.实验内容

策略梯度算法文章中2.2 策略梯度算法。

通俗总结

① 优胜劣汰

② 学如逆水行舟,不进则退。

2.实验目标

2.1 构建策略模型

python 复制代码
class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
    # 输入就是state, 输出就是一个action分布
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.softmax(x, dim=1)

2.2 目标函数 及其 loss函数

loss = -微分对象=-Q*log概率

python 复制代码
def update(self, transition_dict):
    state_list  = transition_dict['states']
    action_list = transition_dict['actions']
    reward_list = transition_dict['rewards']
    # 每个episode为单位, 计算动作价值的累计收益
    G = 0
    
    # 倒放数据,计算动作的累计收益
    self.optimizer.zero_grad()
    for i in range(len(reward_list)-1, -1, -1):
        state = torch.tensor([state_list[i]]).to(self.device)
        action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device)
        G = reward_list[i] + self.gamma*G
        logP = torch.log(self.policy_net(state).gather(1, action))
        loss = -G*logP
        loss.backward()
    self.optimizer.step()

2.3 思考算法的优缺点

a、仅使用sar数据,可能会限制算法的能力上线

b、无偏,但是方差比较大

3.完整代码

见附件

4.实验结果

模型训练750个epoch接近收敛,而后震荡收敛。

尝试扩大epoch,效果如下:

结论:总的来说,可以收敛,但是收敛效果并不是很好,后续和AC算法做一下对比。

有没有小伙伴知道为啥后期收敛效果不好?欢迎评论指教。

相关推荐
_OP_CHEN10 小时前
【算法基础篇】(四十二)数论之欧拉函数深度精讲:从互质到数论应用
c++·算法·蓝桥杯·数论·欧拉函数·算法竞赛·acm/icpc
说私域10 小时前
电商价格战下的创新破局:定制开发开源AI智能名片S2B2C商城小程序的应用与价值
人工智能·小程序·开源
摆烂咸鱼~10 小时前
机器学习(11)
人工智能·机器学习
love530love10 小时前
EPGF 新手教程 13在 PyCharm(中文版 GUI)中创建 Hatch 项目环境,并把 Hatch 做成“项目自包含”(工具本地化为必做环节)
开发语言·ide·人工智能·windows·python·pycharm·hatch
Eloudy10 小时前
模板函数动态库与头文件设计示例
算法·cuda
科技小E10 小时前
EasyGBS:融合算法与算力的核心能力及行业应用价值
人工智能·安全
汗流浃背了吧,老弟!10 小时前
LoSA入门:如何实现高效适配
人工智能
星云数灵10 小时前
大模型高级工程师考试练习题4
人工智能·算法·机器学习·大模型·大模型考试题库·阿里云aca·阿里云acp大模型考试题库
老胡全房源系统10 小时前
房产中介管理系统哪一款适合中介?
大数据·人工智能
IT_陈寒10 小时前
Python 3.12性能优化实战:5个让你的代码提速30%的新特性
前端·人工智能·后端