【强化学习实验】- 策略梯度算法

1.实验内容

策略梯度算法文章中2.2 策略梯度算法。

通俗总结

① 优胜劣汰

② 学如逆水行舟,不进则退。

2.实验目标

2.1 构建策略模型

python 复制代码
class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
    # 输入就是state, 输出就是一个action分布
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.softmax(x, dim=1)

2.2 目标函数 及其 loss函数

loss = -微分对象=-Q*log概率

python 复制代码
def update(self, transition_dict):
    state_list  = transition_dict['states']
    action_list = transition_dict['actions']
    reward_list = transition_dict['rewards']
    # 每个episode为单位, 计算动作价值的累计收益
    G = 0
    
    # 倒放数据,计算动作的累计收益
    self.optimizer.zero_grad()
    for i in range(len(reward_list)-1, -1, -1):
        state = torch.tensor([state_list[i]]).to(self.device)
        action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device)
        G = reward_list[i] + self.gamma*G
        logP = torch.log(self.policy_net(state).gather(1, action))
        loss = -G*logP
        loss.backward()
    self.optimizer.step()

2.3 思考算法的优缺点

a、仅使用sar数据,可能会限制算法的能力上线

b、无偏,但是方差比较大

3.完整代码

见附件

4.实验结果

模型训练750个epoch接近收敛,而后震荡收敛。

尝试扩大epoch,效果如下:

结论:总的来说,可以收敛,但是收敛效果并不是很好,后续和AC算法做一下对比。

有没有小伙伴知道为啥后期收敛效果不好?欢迎评论指教。

相关推荐
Fairy要carry2 小时前
2025/12/15英语打卡
人工智能
weixin_446260852 小时前
《从零开始构建智能体》—— 实践与理论结合的智能体入门指南
人工智能
栀秋6662 小时前
深入浅出链表操作:从Dummy节点到快慢指针的实战精要
前端·javascript·算法
新加坡内哥谈技术3 小时前
Claude 代理技能:从第一性原理出发的深度解析
人工智能
长空任鸟飞_阿康3 小时前
FastAPI 入门指南
人工智能
Pyeako3 小时前
机器学习之KNN算法
人工智能·算法·机器学习
Mxsoft6193 小时前
我发现知识图谱节点关系缺失致诊断不准,自动关系抽取补全救场
人工智能
xhxxx3 小时前
从被追问到被点赞:我靠“哨兵+快慢指针”展示了面试官真正想看的代码思维
javascript·算法·面试
可信计算3 小时前
【算法随想】一种基于“视觉表征图”拓扑变化的NLP序列预测新范式
人工智能·笔记·python·算法·自然语言处理