功能说明与风险警示
本策略通过长短期记忆网络(LSTM)模型整合价格序列、成交量动态及技术指标特征,构建时序预测模型用于金融市场方向判断。核心功能包含:1) 多源数据标准化处理;2) 技术指标衍生计算;3) 时序特征工程;4) LSTM网络参数优化。该策略存在过拟合风险、滞后效应及黑箱模型可解释性不足等问题,实际部署需配合严格的风险管理机制。
数据预处理与特征工程
基础数据规范化
python
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
def preprocess_data(df, feature_cols):
"""实现多维度数据的归一化处理"""
scalers = {col: MinMaxScaler(feature_range=(0, 1))
for col in feature_cols}
processed = df.copy()
for col in feature_cols:
processed[col] = scalers[col].fit_transform(
processed[col].values.reshape(-1, 1)
).flatten()
return processed, scalers
技术指标矩阵构建
python
def calculate_technical_indicators(df):
"""生成包含趋势和波动率特征的技术指标集"""
# 移动平均线系统
df['MA5'] = df['close'].rolling(window=5).mean()
df['MA20'] = df['close'].rolling(window=20).mean()
# 动量指标
df['RSI'] = compute_rsi(df['close'])
df['MACD'], df['MACD_signal'] = compute_macd(df['close'])
# 波动率度量
df['ATR'] = compute_atr(df['high'], df['low'], df['close'])
# 成交量加权指标
df['VWAP'] = (df['volume'] * df['close']).cumsum() / df['volume'].cumsum()
return df.dropna()
LSTM模型架构设计
三维输入张量构造
python
def create_sequences(data, target_col, sequence_length):
"""将时间序列转换为监督学习格式"""
X, y = [], []
for i in range(len(data) - sequence_length):
# 提取窗口内的价格、成交量和技术指标
seq = data.iloc[i:(i+sequence_length)]
X.append(seq.values)
# 下一时刻的涨跌标记
y.append(1 if data.iloc[i+sequence_length][target_col] >
data.iloc[i+sequence_length-1][target_col] else 0)
return np.array(X), np.array(y)
混合注意力机制层
python
from tensorflow.keras.layers import Attention, LSTM, Dense, Dropout
def build_lstm_model(input_shape, num_features):
"""构建带注意力机制的LSTM网络"""
inputs = tf.keras.Input(shape=input_shape)
# 第一层LSTM捕获时序依赖
x = LSTM(64, return_sequences=True)(inputs)
x = Dropout(0.3)(x)
# 第二层LSTM提取高层特征
x = LSTM(32, return_sequences=True)(x)
x = Attention()([x, x]) # 自注意力机制
# 全连接层进行特征融合
x = Dense(16, activation='relu')(x)
outputs = Dense(1, activation='sigmoid')(x)
return tf.keras.Model(inputs=inputs, outputs=outputs)
训练流程与验证体系
时空交叉验证方案
python
def temporal_cv_split(data, n_splits=5):
"""按时间顺序划分训练测试集"""
split_points = np.linspace(0, len(data), n_splits+1, dtype=int)[1:-1]
folds = []
for i in range(n_splits):
train_end = split_points[i]
test_end = split_points[i+1] if i < n_splits-1 else len(data)
folds.append((
data.iloc[:train_end],
data.iloc[train_end:test_end]
))
return folds
类别平衡处理
python
class_weights = compute_class_weight(
'balanced',
classes=np.unique(y_train),
y=y_train
)
history = model.fit(
X_train, y_train,
validation_data=(X_val, y_val),
class_weight=dict(enumerate(class_weights)),
batch_size=32,
epochs=100,
callbacks=[EarlyStopping(patience=10, restore_best_weights=True)]
)
实盘部署关键要素
在线特征更新管道
python
class RealtimeFeatureUpdater:
"""实时维护特征矩阵的增量更新组件"""
def __init__(self, window_size=60):
self.window_size = window_size
self.feature_buffer = deque(maxlen=window_size)
def update_features(self, new_tick):
"""接收新行情数据并更新特征缓冲区"""
current_features = self._compute_current_features(new_tick)
self.feature_buffer.append(current_features)
if len(self.feature_buffer) == self.window_size:
return np.array(self.feature_buffer)
return None
def _compute_current_features(self, tick):
"""实时计算各项技术指标"""
# 实现包括:指数平滑移动平均线(EWMA)
# 真实波幅(ATR)递推计算等
pass
置信度校准模块
python
def calibrate_confidence(predictions, actuals, method='isotonic'):
"""使用等渗回归校准预测置信度"""
from sklearn.isotonic import IsotonicRegression
ir = IsotonicRegression(increasing=True)
calibrated_probs = ir.fit_transform(predictions, actuals)
# 绘制可靠性曲线
plt.figure(figsize=(8, 6))
binned_truth, bin_edges, _ = histogram(actuals, predictions, bins=10)
plot_reliability_diagram(binned_truth, bin_edges)
return calibrated_probs
策略有效性验证
样本外测试框架
python
def backtest_strategy(model, test_data, initial_capital=100000):
"""模拟交易执行过程评估策略表现"""
portfolio_value = [initial_capital]
position = 0
for i in range(len(test_data)-SEQUENCE_LENGTH):
# 获取当前预测信号
pred_signal = model.predict(test_data[i:i+SEQUENCE_LENGTH])[0][0]
# 根据信号调整仓位
if pred_signal > 0.5 and position == 0:
position = portfolio_value[-1] / test_data['close'].iloc[i+SEQUENCE_LENGTH]
portfolio_value.append(portfolio_value[-1] - test_data['close'].iloc[i+SEQUENCE_LENGTH]*position)
elif pred_signal <= 0.5 and position > 0:
portfolio_value.append(portfolio_value[-1] + test_data['close'].iloc[i+SEQUENCE_LENGTH]*position)
position = 0
else:
portfolio_value.append(portfolio_value[-1])
# 计算绩效指标
returns = np.diff(portfolio_value)/portfolio_value[:-1]
sharpe_ratio = np.mean(returns) / (np.std(returns)+1e-8) * np.sqrt(252)
max_drawdown = compute_max_drawdown(portfolio_value)
return {
'final_value': portfolio_value[-1],
'sharpe_ratio': sharpe_ratio,
'max_drawdown': max_drawdown,
'win_rate': np.mean(returns>0)
}