线性代数(九)线性相关性、基与维数

首先给出向量组线性无关的概念,一组向量无法通过线性组合(除了全取0)得到0向量,则该组向量相互之间线性无关。

如果一个矩阵,其列向量组是线性无关的,那么这个矩阵的零空间将只有零向量;反之,如果矩阵的零空间中不仅仅存在零向量,这意味着可以通过线性组合将其列向量组合成零向量,也即这些向量线性相关。

矩阵的秩rank,代表着矩阵中主元个数,主列个数。如果rank=n(列数),同时也代表每个列都是主列,那它们彼此也是线性无关的;如果rank<n,则代表存在自由列,那么列向量之间也就是线性相关的。

一组向量,其所有线性组合将张成一个空间,该空间是包含这些向量(包括其线性组合)的最小空间;如在中,向量和向量的所有线性组合将构成一个平面空间,该空间是的子空间,所以这些向量自然也应该包含在中,所以说平面空间是包含这些向量的"最小"空间。

要想张成N维度空间,最少需要N个线性无关的向量,这些向量成为空间的一组基,基向量的个数就是张成的空间的维度,一个空间内可以有很多组基,但每组基所包含的向量的个数一定是相等的,为N。基向量构成的矩阵是一个可逆矩阵

给定矩阵,其列向量张成列空间,容易看出,该矩阵的列空间的一组基为,则其张成的列空间为即二维空间,同时矩阵的秩rank=2。矩阵的秩rank的意义除了代表矩阵的主元个数、主列个数,还代表着矩阵的列空间的维度。

矩阵的零空间同样是由一组基张成的。已知矩阵A有4列,rank=2,则自由列有4-2=2列,方程中的自由变量也有两个,基础解系有两个向量,显然这同样意味着零空间的维度是2。推广到m*n的情况,如果矩阵有n列,rank=r,则矩阵的零空间的维度等于方程Ax=0的自由变量的个数、基础解系的个数n-r。

显然,矩阵的列空间的维度和零空间的维度具有对称关系,列空间的维度为rank,而零空间的维度为n-rank

相关推荐
yyy(十一月限定版)43 分钟前
寒假集训4——二分排序
算法
星火开发设计43 分钟前
类型别名 typedef:让复杂类型更简洁
开发语言·c++·学习·算法·函数·知识
醉颜凉1 小时前
【LeetCode】打家劫舍III
c语言·算法·leetcode·树 深度优先搜索·动态规划 二叉树
达文汐1 小时前
【困难】力扣算法题解析LeetCode332:重新安排行程
java·数据结构·经验分享·算法·leetcode·力扣
一匹电信狗1 小时前
【LeetCode_21】合并两个有序链表
c语言·开发语言·数据结构·c++·算法·leetcode·stl
User_芊芊君子1 小时前
【LeetCode经典题解】搞定二叉树最近公共祖先:递归法+栈存路径法,附代码实现
算法·leetcode·职场和发展
算法_小学生1 小时前
LeetCode 热题 100(分享最简单易懂的Python代码!)
python·算法·leetcode
执着2591 小时前
力扣hot100 - 234、回文链表
算法·leetcode·链表
Gorgous—l1 小时前
数据结构算法学习:LeetCode热题100-多维动态规划篇(不同路径、最小路径和、最长回文子串、最长公共子序列、编辑距离)
数据结构·学习·算法
熬夜造bug1 小时前
LeetCode Hot100 刷题路线(Python版)
算法·leetcode·职场和发展