改进遗传算法求解VRP问题的局部搜索能力是提高算法性能的关键。
1. 局部搜索算子设计
1.1 2-opt局部搜索
matlab
function new_route = two_opt(route, distance_matrix)
% 2-opt局部搜索:交换两条边来改进路径
new_route = route;
n = length(route);
improved = true;
while improved
improved = false;
for i = 1:n-2
for j = i+2:n
if j == n && i == 1
continue; % 避免首尾相连
end
% 计算当前距离
current_dist = distance_matrix(route(i), route(i+1)) + ...
distance_matrix(route(j), route(mod(j,n)+1));
% 计算交换后距离
new_dist = distance_matrix(route(i), route(j)) + ...
distance_matrix(route(i+1), route(mod(j,n)+1));
% 如果改进则交换
if new_dist < current_dist
new_route(i+1:j) = new_route(j:-1:i+1);
improved = true;
break;
end
end
if improved
break;
end
end
end
end
1.2 λ-interchange局部搜索
matlab
function new_solution = lambda_interchange(solution, distance_matrix, lambda)
% λ-interchange局部搜索:交换不同路径间的客户
new_solution = solution;
num_routes = length(solution);
improved = true;
while improved
improved = false;
for i = 1:num_routes-1
for j = i+1:num_routes
route1 = solution{i};
route2 = solution{j};
if length(route1) < 2 || length(route2) < 2
continue;
end
% 尝试不同的交换组合
for k = 1:min(lambda, length(route1)-1)
for m = 1:min(lambda, length(route2)-1)
% 交换k个客户从route1到route2,m个客户从route2到route1
[new_route1, new_route2, improvement] = ...
exchange_customers(route1, route2, k, m, distance_matrix);
if improvement > 0
new_solution{i} = new_route1;
new_solution{j} = new_route2;
improved = true;
end
end
end
end
end
end
end
function [new_route1, new_route2, improvement] = exchange_customers(route1, route2, k, m, dist_mat)
% 执行客户交换
best_improvement = 0;
new_route1 = route1;
new_route2 = route2;
% 生成所有可能的交换组合
combinations1 = nchoosek(2:length(route1)-1, k);
combinations2 = nchoosek(2:length(route2)-1, m);
for i = 1:size(combinations1, 1)
for j = 1:size(combinations2, 1)
customers1 = route1(combinations1(i, :));
customers2 = route2(combinations2(j, :));
% 创建新路径
temp_route1 = route1;
temp_route1(combinations1(i, :)) = [];
insert_positions = find_insertion_positions(temp_route1, customers2, dist_mat);
temp_route2 = route2;
temp_route2(combinations2(j, :)) = [];
insert_positions2 = find_insertion_positions(temp_route2, customers1, dist_mat);
% 计算改进
old_cost = calculate_route_cost(route1, dist_mat) + ...
calculate_route_cost(route2, dist_mat);
new_cost = calculate_route_cost(temp_route1, dist_mat) + ...
calculate_route_cost(temp_route2, dist_mat);
improvement = old_cost - new_cost;
if improvement > best_improvement
best_improvement = improvement;
new_route1 = temp_route1;
new_route2 = temp_route2;
end
end
end
improvement = best_improvement;
end
2. 混合遗传算法框架
2.1 主算法框架
matlab
function [best_solution, best_cost, convergence] = hybrid_ga_vrp(customers, vehicle_capacity, pop_size, max_gen)
% 混合遗传算法求解VRP
% 初始化参数
num_customers = length(customers);
distance_matrix = calculate_distance_matrix(customers);
% 初始化种群
population = initialize_population(pop_size, num_customers, customers, vehicle_capacity);
% 评估初始种群
costs = zeros(pop_size, 1);
for i = 1:pop_size
costs(i) = calculate_total_cost(population{i}, distance_matrix);
end
[best_cost, best_idx] = min(costs);
best_solution = population{best_idx};
convergence = zeros(max_gen, 1);
% 遗传算法主循环
for gen = 1:max_gen
% 选择
selected_indices = tournament_selection(costs, pop_size);
% 交叉
offspring = cell(pop_size, 1);
for i = 1:2:pop_size
parent1 = population{selected_indices(i)};
parent2 = population{selected_indices(i+1)};
[child1, child2] = order_crossover(parent1, parent2, vehicle_capacity);
offspring{i} = child1;
offspring{i+1} = child2;
end
% 变异
for i = 1:pop_size
if rand() < 0.1
offspring{i} = swap_mutation(offspring{i});
end
end
% 局部搜索(关键改进)
for i = 1:pop_size
% 自适应局部搜索概率
ls_probability = 0.3 + 0.5 * (gen / max_gen);
if rand() < ls_probability
% 多种局部搜索算子轮换使用
if mod(gen, 3) == 0
offspring{i} = two_opt_multiple_routes(offspring{i}, distance_matrix);
elseif mod(gen, 3) == 1
offspring{i} = lambda_interchange(offspring{i}, distance_matrix, 2);
else
offspring{i} = relocation_search(offspring{i}, distance_matrix);
end
end
end
% 评估子代
offspring_costs = zeros(pop_size, 1);
for i = 1:pop_size
offspring_costs(i) = calculate_total_cost(offspring{i}, distance_matrix);
end
% 精英选择
combined_pop = [population; offspring];
combined_costs = [costs; offspring_costs];
[sorted_costs, sorted_indices] = sort(combined_costs);
for i = 1:pop_size
population{i} = combined_pop{sorted_indices(i)};
costs(i) = sorted_costs(i);
end
% 更新最优解
if costs(1) < best_cost
best_cost = costs(1);
best_solution = population{1};
end
convergence(gen) = best_cost;
fprintf('Generation %d: Best Cost = %.2f\n', gen, best_cost);
end
end
3. 高级局部搜索技术
3.1 变邻域搜索(VNS)
matlab
function improved_solution = vns_search(solution, distance_matrix, max_iter)
% 变邻域搜索
improved_solution = solution;
current_cost = calculate_total_cost(solution, distance_matrix);
% 定义邻域结构
neighborhood_structures = {@swap_neighborhood, @relocation_neighborhood, @two_opt_neighborhood};
for iter = 1:max_iter
k = 1;
while k <= length(neighborhood_structures)
% 抖动:在当前邻域中随机移动
shaken_solution = shaking(improved_solution, k);
% 局部搜索
candidate_solution = local_search_vns(shaken_solution, distance_matrix, k);
candidate_cost = calculate_total_cost(candidate_solution, distance_matrix);
if candidate_cost < current_cost
improved_solution = candidate_solution;
current_cost = candidate_cost;
k = 1; % 回到第一个邻域
else
k = k + 1; % 移动到下一个邻域
end
end
end
end
function shaken_solution = shaking(solution, k)
% 抖动过程
shaken_solution = solution;
num_routes = length(solution);
switch k
case 1
% 交换两个随机客户
shaken_solution = random_swap(shaken_solution);
case 2
% 随机重定位一个客户
shaken_solution = random_relocation(shaken_solution);
case 3
% 2-opt随机交换
route_idx = randi(num_routes);
if length(shaken_solution{route_idx}) > 3
shaken_solution{route_idx} = random_two_opt(shaken_solution{route_idx});
end
end
end
3.2 模拟退火局部搜索
matlab
function improved_solution = sa_local_search(solution, distance_matrix, initial_temp, cooling_rate)
% 模拟退火局部搜索
current_solution = solution;
current_cost = calculate_total_cost(solution, distance_matrix);
best_solution = current_solution;
best_cost = current_cost;
temperature = initial_temp;
while temperature > 1e-6
for i = 1:100 % 内循环次数
% 生成邻域解
neighbor = generate_neighbor(current_solution);
neighbor_cost = calculate_total_cost(neighbor, distance_matrix);
% 计算代价差
delta_cost = neighbor_cost - current_cost;
% 接受准则
if delta_cost < 0 || rand() < exp(-delta_cost / temperature)
current_solution = neighbor;
current_cost = neighbor_cost;
if current_cost < best_cost
best_solution = current_solution;
best_cost = current_cost;
end
end
end
% 降温
temperature = temperature * cooling_rate;
end
improved_solution = best_solution;
end
4. 自适应局部搜索策略
4.1 自适应算子选择
matlab
function operator_weights = adaptive_operator_selection(operator_weights, improvements, learning_rate)
% 自适应调整局部搜索算子的权重
total_improvements = sum(improvements);
if total_improvements > 0
success_rates = improvements / total_improvements;
% 更新权重
for i = 1:length(operator_weights)
operator_weights(i) = (1 - learning_rate) * operator_weights(i) + ...
learning_rate * success_rates(i);
end
% 归一化
operator_weights = operator_weights / sum(operator_weights);
end
end
function selected_operator = select_operator_by_weight(operator_weights)
% 根据权重选择局部搜索算子
r = rand();
cumulative_weights = cumsum(operator_weights);
selected_operator = find(cumulative_weights >= r, 1);
end
5. 记忆和引导策略
5.1 路径重连(Path Relinking)
matlab
function improved_solution = path_relinking(initial_solution, guiding_solution, distance_matrix)
% 路径重连:从初始解向引导解移动
current_solution = initial_solution;
best_solution = initial_solution;
best_cost = calculate_total_cost(initial_solution, distance_matrix);
% 计算解之间的差异
differences = calculate_solution_differences(initial_solution, guiding_solution);
while ~isempty(differences)
% 选择最佳的移动
best_move = [];
best_improvement = inf;
for i = 1:length(differences)
candidate_solution = apply_move(current_solution, differences(i));
candidate_cost = calculate_total_cost(candidate_solution, distance_matrix);
improvement = candidate_cost - calculate_total_cost(current_solution, distance_matrix);
if improvement < best_improvement
best_improvement = improvement;
best_move = differences(i);
end
end
% 应用最佳移动
current_solution = apply_move(current_solution, best_move);
current_cost = calculate_total_cost(current_solution, distance_matrix);
% 更新最优解
if current_cost < best_cost
best_solution = current_solution;
best_cost = current_cost;
end
% 更新差异
differences = calculate_solution_differences(current_solution, guiding_solution);
end
improved_solution = best_solution;
end
参考代码 改进遗传算法求解VRP问题时的局部搜索能力 www.3dddown.com/csa/82193.html
6. 实施建议
-
分层局部搜索:
- 第一层:快速局部搜索(2-opt)
- 第二层:中等强度搜索(λ-interchange)
- 第三层:高强度搜索(VNS、模拟退火)
-
自适应控制:
- 根据搜索进度调整局部搜索强度
- 早期:较弱局部搜索,保持多样性
- 后期:较强局部搜索,精细调优
-
计算资源分配:
- 对优质个体施加更强局部搜索
- 限制每次局部搜索的计算时间
-
混合策略:
- 结合多种局部搜索算子的优点
- 使用自适应机制选择最有效的算子