【VLA】如何构建高质量的机器人训练数据集?

在 LeRobot 社区,我们发现数据集的质量直接决定了机器人策略(Policy)的可靠性与泛化能力。为了提升自动化清洗效率并优化训练效果,我们总结了当前社区数据集常见的"四大坑",并为你准备了一份保姆级录制清单


一、 常见问题:为什么你的数据集不好用?

在开发自动化策展流水线(Curation Pipeline)时,我们发现了以下四大痛点:

  1. 任务标注(Task Annotation)太模糊
    语义是认知系统的核心。目前很多数据集存在任务描述为空、太短(如"Hold")或毫无意义(如"task1")的问题。这会导致机器人无法准确理解动作意图。
  2. 特征命名(Feature Mapping)不规范
    例如使用 images.laptop 这种标签,我们无法判断它是第三人称视角还是腕部相机。这种混乱增加了后期人工映射的成本。
  3. 数据不完整或索引破损
    部分序列只有寥寥几帧,或者手动删除了文件却未更新元数据索引,导致训练时读取中断。
  4. 维度与格式不一致
    即使是同一种机器人(如 SO-100),不同作者采集的动作/状态维度也往往不统一,难以进行大规模联合训练。

二、 黄金标准:优秀数据集长什么样?

为了解决上述问题,我们建议在数据采集过程中严格遵守以下 LeRobot 录制规范

1. 视觉质量:给机器人一双"清晰"的眼睛
  • 多视角并行 :建议至少保留 2 个相机视角
  • 画面稳定:严禁相机晃动,确保曝光一致、对焦清晰。
  • 光线中性:避免过蓝或过黄的极端灯光。
  • 画面纯净Leader Arm(操纵臂)严禁入镜;画面中除了机器人 Follower Arm 和目标物体外,不应有其他移动物体(如人的肢体)。
  • 高分辨率 :至少达到 720p
2. 规范命名:标准化的语义表达

遵循 <模态>.<位置> 的命名格式,禁止使用设备名:

  • 推荐images.top / images.left / images.front
  • 腕部相机 :需注明方位,如 images.wrist.leftimages.wrist.bottom
  • 拒用images.laptopimages.phone
3. 任务描述:不仅是文字,更是指令
  • 精准描述:例如"捡起黄色乐高块并放入盒子"。
  • 字数控制 :保持在 25--50 个字符之间,既要详细又要精炼。
  • 拒绝敷衍 :严禁使用 task1demo2 等无意义名称。
4. 协议与元数据:保持逻辑一致性
  • 帧率统一 :建议设定在 30 FPS 左右。
  • 动态更新:如果删除了某些失败的 Episode,务必同步更新元数据索引文件,确保数据流的连续性。

三、 总结:LeRobot 数据采集核查清单

你可以直接参考下图这张录制清单(Checklist),在每次按下"录制"键前对照检查:


结语

一个整洁、规范的数据集是迈向通用机器人智能的第一步。通过标准化的标注与高质量的视觉输入,我们可以让 LeRobot 社区的策略模型变得更加强大。

想要了解更多? 可以访问 GitHub 仓库:git@github.com:huggingface/lerobot.git

相关推荐
机器觉醒时代2 小时前
Helix 02 :移动+操作融合,解锁人形机器人全身控制的VLA模型
机器人·ai大模型·具身智能·人形机器人
DN20203 小时前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
藦卡机器人3 小时前
国内搬运机器人品牌做的比较好的有哪些?
机器人
暮志未晚Webgl3 小时前
UE5使用CameraShake相机震动提升游戏体验
数码相机·游戏·ue5
哎呦 你干嘛~4 小时前
相机+二维舵机云台的人员追踪
数码相机
DN20205 小时前
AI销售机器人的隐私痛点与破解之道
人工智能·python·机器学习·机器人·节日
码农三叔7 小时前
(7-3-02)电机与执行器系统:驱动器开发与控制接口(2)实时通信总线设计+33自由度人形机器人的双信道EtherCAT主设备架构
人工智能·机器人·人形机器人
木子啊8 小时前
ProCamera 智能水印相机解决方案 (UniApp)
数码相机·uni-app·水印相机·小程序水印
中國龍在廣州9 小时前
AI时代“新BAT”正在崛起
大数据·人工智能·深度学习·重构·机器人
犀思云19 小时前
如何通过网络即服务平台实现企业数字化转型?
运维·网络·人工智能·系统架构·机器人