Tanh Function - Derivatives and Gradients (导数和梯度)

Tanh Function - Derivatives and Gradients {导数和梯度}

  • [1. Tanh Function](#1. Tanh Function)
    • [1.1. Shape](#1.1. Shape)
  • [2. Tanh Function - Derivatives and Gradients (导数和梯度)](#2. Tanh Function - Derivatives and Gradients (导数和梯度))
    • [2.1. PyTorch `torch.nn.Tanh(*args, **kwargs)`](#2.1. PyTorch torch.nn.Tanh(*args, **kwargs))
    • [2.2. PyTorch `torch.nn.Tanh(*args, **kwargs)`](#2.2. PyTorch torch.nn.Tanh(*args, **kwargs))
    • [2.3. Python Tanh Function](#2.3. Python Tanh Function)
    • [2.4. Python Tanh Function](#2.4. Python Tanh Function)
  • References

1. Tanh Function

class torch.nn.Tanh(*args, **kwargs)
https://docs.pytorch.org/docs/stable/generated/torch.nn.Tanh.html

torch.nn.functional.tanh(input) -> Tensor
https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.tanh.html

https://github.com/pytorch/pytorch/blob/v2.9.1/torch/nn/modules/activation.py

class torch.nn.Tanh(*args, **kwargs)

Applies the Hyperbolic Tangent (Tanh) function element-wise.

复制代码
hyperbolic [ˌhaɪpə'bɒlɪk]
adj. 双曲线的;夸张的;夸张法的
tangent [ˈtændʒ(ə)nt]
n. 切线;正切
adj. 切线的;正切的;接触的;离题的

The definition of the Tanh function:

tanh ⁡ ( x ) = sinh ⁡ ( x ) cosh ⁡ ( x ) = exp ⁡ ( x ) − exp ⁡ ( − x ) exp ⁡ ( x ) + exp ⁡ ( − x ) = e x − e − x e x + e − x = e 2 x − 1 e 2 x + 1 = 1 − e − 2 x 1 + e − 2 x \begin{aligned} \tanh(x) = \frac{\sinh(x)}{\cosh(x)} &= \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} \\ &= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \\ &= \frac{e^{2x} - 1} {e^{2x} + 1} \\ &= \frac{1 - e^{-2x}} {1 + e^{-2x}} \\ \end{aligned} tanh(x)=cosh(x)sinh(x)=exp(x)+exp(−x)exp(x)−exp(−x)=ex+e−xex−e−x=e2x+1e2x−1=1+e−2x1−e−2x

若已知两个可导函数 g g g, h h h 及其导数 g ′ g' g′, h ′ h' h′,且 h ( x ) ≠ 0 h(x)\neq 0 h(x)=0,则它们的商

f ( x ) = g ( x ) h ( x ) \begin{aligned} f(x) = \frac{g(x)}{h(x)} \end{aligned} f(x)=h(x)g(x)

的导数为:

f ′ ( x ) = d d x ( g ( x ) h ( x ) ) = d d x g ( x ) ∗ h ( x ) − g ( x ) ∗ d d x h ( x ) ( h ( x ) ) 2 = g ′ ( x ) ∗ h ( x ) − g ( x ) ∗ h ′ ( x ) ( h ( x ) ) 2 \begin{aligned} f'(x) &= \frac{d}{dx} \left( {\frac{{g\left( x \right)}}{{h\left( x \right)}}} \right) \\ &= \frac{{\frac{d}{dx} g\left( x \right) * h\left( x \right) - g\left( x \right) * \frac{d}{dx}h\left( x \right)}}{(h \left( x \right))^2} \\ &= \frac{g'(x) * h(x) - g(x) * h'(x)}{(h(x))^2} \end{aligned} f′(x)=dxd(h(x)g(x))=(h(x))2dxdg(x)∗h(x)−g(x)∗dxdh(x)=(h(x))2g′(x)∗h(x)−g(x)∗h′(x)

The derivative of the Tanh function:

d d x tanh ⁡ ( x ) = d d x ( e x − e − x e x + e − x ) = d d x ( e x − e − x ) ∗ ( e x + e − x ) − ( e x − e − x ) ∗ d d x ( e x + e − x ) ( e x + e − x ) 2 = ( e x + e − x ) ∗ ( e x + e − x ) − ( e x − e − x ) ∗ ( e x − e − x ) ( e x + e − x ) 2 = ( e x + e − x ) 2 − ( e x − e − x ) 2 ( e x + e − x ) 2 = 1 − ( e x − e − x ) 2 ( e x + e − x ) 2 = 1 − ( tanh ⁡ ( x ) ) 2 \begin{aligned} \frac{d}{dx} \tanh(x) &= \frac{d}{dx} \left( \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \right) \\[1ex] &= \frac{ \frac{d}{dx} \left( e^{x} - e^{-x} \right) * \left( e^{x} + e^{-x} \right) - \left( e^{x} - e^{-x} \right) * \frac{d}{dx} \left( e^{x} + e^{-x} \right) }{{\left( e^{x} + e^{-x} \right)}^2} \\[1ex] &= \frac{ \left( e^{x} + e^{-x} \right) * \left( e^{x} + e^{-x} \right) - \left( e^{x} - e^{-x} \right) * \left( e^{x} - e^{-x} \right) }{{\left( e^{x} + e^{-x} \right)}^2} \\[1ex] &= \frac{ \left( e^{x} + e^{-x} \right)^{2} - \left( e^{x} - e^{-x} \right)^{2} }{{\left( e^{x} + e^{-x} \right)}^2} \\[1.2ex] &= 1 - \frac{\left( e^{x} - e^{-x} \right)^{2} }{{\left( e^{x} + e^{-x} \right)}^2} \\[1.2ex] &= 1 - \left( \tanh(x) \right)^2 \\ \end{aligned} dxdtanh(x)=dxd(ex+e−xex−e−x)=(ex+e−x)2dxd(ex−e−x)∗(ex+e−x)−(ex−e−x)∗dxd(ex+e−x)=(ex+e−x)2(ex+e−x)∗(ex+e−x)−(ex−e−x)∗(ex−e−x)=(ex+e−x)2(ex+e−x)2−(ex−e−x)2=1−(ex+e−x)2(ex−e−x)2=1−(tanh(x))2

This is the graph for the Tanh function and its derivative.

1.1. Shape

  • Input : (*), where * means any number of dimensions.

  • Output : (*), same shape as the input.

Note that as input nears 0, the Tanh function approaches a linear transformation. Although the shape of the function is similar to that of the Sigmoid function, the Tanh function exhibits point symmetry about the origin of the coordinate system.

注意,当输入在 0 附近时,Tanh 函数接近线性变换。函数的形状类似于 Sigmoid 函数,不同的是 Tanh 函数关于坐标系原点中心对称。

复制代码
# !/usr/bin/env python
# coding=utf-8

import torch
from matplotlib import pyplot as plt


def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None, ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    """
    https://github.com/d2l-ai/d2l-en/blob/master/d2l/torch.py
    """

    def has_one_axis(X):  # True if X (tensor or list) has 1 axis
        return ((hasattr(X, "ndim") and (X.ndim == 1)) or (isinstance(X, list) and (not hasattr(X[0], "__len__"))))

    if has_one_axis(X): X = [X]

    if Y is None:
        X, Y = [[]] * len(X), X
    elif has_one_axis(Y):
        Y = [Y]

    if len(X) != len(Y):
        X = X * len(Y)

    # Set the default width and height of figures globally, in inches.
    plt.rcParams['figure.figsize'] = figsize

    if axes is None:
        axes = plt.gca()  # Get the current Axes

    # Clear the Axes
    axes.cla()

    for x, y, fmt in zip(X, Y, fmts):
        axes.plot(x, y, fmt) if len(x) else axes.plot(y, fmt)

    axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)  # Set the label for the x/y-axis
    axes.set_xscale(xscale), axes.set_yscale(yscale)  # Set the x/y-axis scale
    axes.set_xlim(xlim), axes.set_ylim(ylim)  # Set the x/y-axis view limits

    if legend:
        axes.legend(legend)  # Place a legend on the Axes

    # Configure the grid lines
    axes.grid()

    plt.show()
    plt.savefig("yongqiang.png", transparent=True)  # Save the current figure


x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.tanh(x)
plot(x.detach(), y.detach(), 'x', 'Tanh(x)', figsize=(5, 2.5))

# Clear out previous gradients
# x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
plot(x.detach(), x.grad, 'x', 'gradient of Tanh', figsize=(5, 2.5))

The derivative of the Tanh function:

d d x tanh ⁡ ( x ) = 1 − tanh ⁡ 2 ( x ) . \frac{d}{dx} \operatorname{tanh}(x) = 1 - \operatorname{tanh}^2(x). dxdtanh(x)=1−tanh2(x).

As the input nears 0, the derivative of the Tanh function approaches a maximum of 1. And as we saw with the Sigmoid function, as input moves away from 0 in either direction, the derivative of the Tanh function approaches 0.

当输入接近 0 时,Tanh 函数的导数接近最大值 1。与我们在 Sigmoid 函数图像中看到的类似,输入在任一方向上越远离 0 点,导数越接近 0。

2. Tanh Function - Derivatives and Gradients (导数和梯度)

Notes

  • Element-wise Multiplication (Hadamard Product) (* operator or numpy.multiply()): Multiplies corresponding elements of two arrays that must have the same shape (or be broadcastable to a common shape).
  • Matrix Multiplication (Dot Product) (@ operator or numpy.matmul() or numpy.dot()): Performs the standard linear algebra operation that requires specific dimension compatibility rules. (e.g., the number of columns in the first array must match the number of rows in the second).

2.1. PyTorch torch.nn.Tanh(*args, **kwargs)

复制代码
# !/usr/bin/env python
# coding=utf-8

import torch
import torch.nn as nn

torch.set_printoptions(precision=6)

input = torch.tensor([[-1.5, 0.0, 1.5], [0.5, -2.0, 3.0]], dtype=torch.float, requires_grad=True)

print(f"input.requires_grad: {input.requires_grad}, input.shape: {input.shape}")

tanh = nn.Tanh()
forward_output = tanh(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

forward_output.backward(torch.ones_like(input), retain_graph=True)

print(f"\nbackward_output.shape: {input.grad.shape}")
print(f"Backward Pass Output:\n{input.grad}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/tanh.py 
input.requires_grad: True, input.shape: torch.Size([2, 3])

forward_output.shape: torch.Size([2, 3])
Forward Pass Output:
tensor([[-0.905148,  0.000000,  0.905148],
        [ 0.462117, -0.964028,  0.995055]], grad_fn=<TanhBackward0>)

backward_output.shape: torch.Size([2, 3])
Backward Pass Output:
tensor([[0.180707, 1.000000, 0.180707],
        [0.786448, 0.070651, 0.009866]])

Process finished with exit code 0

2.2. PyTorch torch.nn.Tanh(*args, **kwargs)

复制代码
# !/usr/bin/env python
# coding=utf-8

import torch
import torch.nn as nn

torch.set_printoptions(precision=6)

input = torch.tensor([-1.5, 0.0, 1.5, 0.5, -2.0, 3.0], dtype=torch.float, requires_grad=True)

print(f"input.requires_grad: {input.requires_grad}, input.shape: {input.shape}")

tanh = nn.Tanh()
forward_output = tanh(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

forward_output.backward(torch.ones_like(input), retain_graph=True)

print(f"\nbackward_output.shape: {input.grad.shape}")
print(f"Backward Pass Output:\n{input.grad}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/tanh.py 
input.requires_grad: True, input.shape: torch.Size([6])

forward_output.shape: torch.Size([6])
Forward Pass Output:
tensor([-0.905148,  0.000000,  0.905148,  0.462117, -0.964028,  0.995055],
       grad_fn=<TanhBackward0>)

backward_output.shape: torch.Size([6])
Backward Pass Output:
tensor([0.180707, 1.000000, 0.180707, 0.786448, 0.070651, 0.009866])

Process finished with exit code 0

2.3. Python Tanh Function

复制代码
# !/usr/bin/env python
# coding=utf-8

import numpy as np


# numpy.multiply:
# Multiply arguments element-wise
# Equivalent to x1 * x2 in terms of array broadcasting

class TanhLayer:
    """
    A class to represent a Tanh activation layer for a neural network.
    """

    def __init__(self):
        # Cache the output for the backward pass
        self.output = None

    def forward(self, input):
        """
        Compute tanh(x) and store it for the backward pass
        """

        self.output = np.tanh(input)
        return self.output

    def backward(self, upstream_gradient):
        """
        The derivative of tanh(x) is (1 - tanh(x)^2)
        The total gradient is the element-wise product of the upstream
        gradient and the derivative of the Tanh.
        """

        tanh_derivative = 1 - self.output ** 2
        print(f"\ntanh_derivative.shape: {tanh_derivative.shape}")
        print(f"Tanh Derivative:\n{tanh_derivative}")

        # Computes the gradient of the loss with respect to the input (dL/dx)
        # Apply the chain rule: multiply the derivative by the upstream gradient
        # dL/dx = dL/dy * dy/dx = upstream_gradient * (1 - tanh(x)^2)
        downstream_gradient = upstream_gradient * tanh_derivative
        return downstream_gradient


tanh_layer = TanhLayer()

input = np.array([[-1.5, 0.0, 1.5], [0.5, -2.0, 3.0]], dtype=np.float32)

# Forward pass
forward_output = tanh_layer.forward(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

# Backward pass
upstream_gradient = np.ones(forward_output.shape) * 0.1
backward_output = tanh_layer.backward(upstream_gradient)
print(f"\nbackward_output.shape: {backward_output.shape}")
print(f"Backward Pass Output:\n{backward_output}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/tanh.py 

forward_output.shape: (2, 3)
Forward Pass Output:
[[-0.9051482  0.         0.9051482]
 [ 0.4621172 -0.9640276  0.9950548]]

tanh_derivative.shape: (2, 3)
Tanh Derivative:
[[0.18070674 1.         0.18070674]
 [0.7864477  0.07065082 0.009866  ]]

backward_output.shape: (2, 3)
Backward Pass Output:
[[0.01807067 0.1        0.01807067]
 [0.07864477 0.00706508 0.0009866 ]]

Process finished with exit code 0

2.4. Python Tanh Function

复制代码
# !/usr/bin/env python
# coding=utf-8

import numpy as np


# numpy.multiply:
# Multiply arguments element-wise
# Equivalent to x1 * x2 in terms of array broadcasting

class TanhLayer:
    """
    A class to represent a Tanh activation layer for a neural network.
    """

    def __init__(self):
        # Cache the output for the backward pass
        self.output = None

    def forward(self, input):
        """
        Compute tanh(x) and store it for the backward pass
        """

        self.output = np.tanh(input)
        return self.output

    def backward(self, upstream_gradient):
        """
        The derivative of tanh(x) is (1 - tanh(x)^2)
        The total gradient is the element-wise product of the upstream
        gradient and the derivative of the Tanh.
        """

        tanh_derivative = 1 - self.output ** 2
        print(f"\ntanh_derivative.shape: {tanh_derivative.shape}")
        print(f"Tanh Derivative:\n{tanh_derivative}")

        # Computes the gradient of the loss with respect to the input (dL/dx)
        # Apply the chain rule: multiply the derivative by the upstream gradient
        # dL/dx = dL/dy * dy/dx = upstream_gradient * (1 - tanh(x)^2)
        downstream_gradient = upstream_gradient * tanh_derivative
        return downstream_gradient


tanh_layer = TanhLayer()

input = np.array([-1.5, 0.0, 1.5, 0.5, -2.0, 3.0], dtype=np.float32)

# Forward pass
forward_output = tanh_layer.forward(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

# Backward pass
upstream_gradient = np.ones(forward_output.shape) * 0.1
backward_output = tanh_layer.backward(upstream_gradient)
print(f"\nbackward_output.shape: {backward_output.shape}")
print(f"Backward Pass Output:\n{backward_output}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/tanh.py 

forward_output.shape: (6,)
Forward Pass Output:
[-0.9051482  0.         0.9051482  0.4621172 -0.9640276  0.9950548]

tanh_derivative.shape: (6,)
Tanh Derivative:
[0.18070674 1.         0.18070674 0.7864477  0.07065082 0.009866  ]

backward_output.shape: (6,)
Backward Pass Output:
[0.01807067 0.1        0.01807067 0.07864477 0.00706508 0.0009866 ]

Process finished with exit code 0

References

1\] Yongqiang Cheng (程永强), \[2\] 动手学深度学习, \[3\] Deep Learning Tutorials, \[4\] Gradient boosting performs gradient descent, \[5\] Matrix calculus, \[6\] Artificial Inteligence,

相关推荐
Yongqiang Cheng21 小时前
ReLU Function and Leaky ReLU Function - Derivatives and Gradients (导数和梯度)
梯度·导数·relu·gradients·derivatives·leaky relu
小毅&Nora1 天前
【数学】【微积分】 ③ 导数的核心应用:从变化率到现实世界优化
微积分·导数
Yongqiang Cheng9 天前
Mean Absolute Error (MAE) Loss Function - Derivatives and Gradients (导数和梯度)
梯度·导数·mae·gradients·loss function·derivatives
噜~噜~噜~15 天前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
西西弗Sisyphus20 天前
微积分中 为什么 dy/dx 有时候拆开,有时候是一个整体?
微积分·极限·导数·微分
xian_wwq2 个月前
【学习笔记】深度学习中梯度消失和爆炸问题及其解决方案研究
人工智能·深度学习·梯度
CLubiy2 个月前
【研究生随笔】Pytorch中的线性代数(微分)
人工智能·pytorch·深度学习·线性代数·梯度·微分
nju_spy3 个月前
南京大学 LLM开发基础(一)前向反向传播搭建
人工智能·pytorch·深度学习·大语言模型·梯度·梯度下降·反向传播
大千AI助手4 个月前
梯度消失问题:深度学习中的「记忆衰退」困境与解决方案
人工智能·深度学习·神经网络·梯度·梯度消失·链式法则·vanishing