SELU Function - Derivatives and Gradients {导数和梯度}
- [1. SELU (Scaled Exponential Linear Unit) Function](#1. SELU (Scaled Exponential Linear Unit) Function)
-
- [1.1. Parameters](#1.1. Parameters)
- [1.2. Shape](#1.2. Shape)
- [2. SELU Function - Derivatives and Gradients (导数和梯度)](#2. SELU Function - Derivatives and Gradients (导数和梯度))
-
- [2.1. PyTorch `torch.nn.SELU(inplace=False)`](#2.1. PyTorch
torch.nn.SELU(inplace=False)) - [2.2. PyTorch `torch.nn.SELU(inplace=False)`](#2.2. PyTorch
torch.nn.SELU(inplace=False)) - [2.3. Python SELU Function](#2.3. Python SELU Function)
- [2.4. Python SELU Function](#2.4. Python SELU Function)
- [2.1. PyTorch `torch.nn.SELU(inplace=False)`](#2.1. PyTorch
- References
1. SELU (Scaled Exponential Linear Unit) Function
class torch.nn.SELU(inplace=False)
https://docs.pytorch.org/docs/stable/generated/torch.nn.SELU.html
torch.nn.functional.selu(input, inplace=False) -> Tensor
https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.selu.html
https://github.com/pytorch/pytorch/blob/v2.9.1/torch/nn/modules/activation.py
class torch.nn.SELU(inplace=False)
Applies the SELU function element-wise.
Method described in the paper: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).
The definition of the ELU function:
SELU ( x ) = scale ∗ ( max ( 0 , x ) + min ( 0 , α ∗ ( exp ( x ) − 1 ) ) ) = { scale ∗ x , x > 0 scale ∗ α ∗ ( exp ( x ) − 1 ) , x ≤ 0 = { scale ∗ x , x > 0 scale ∗ α ∗ ( e x − 1 ) , x ≤ 0 \begin{aligned} \text{SELU}(x) &= \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) \\ &= \begin{cases} \text{scale} * x, & x > 0\\ \text{scale} * \alpha * (\exp(x) - 1), & x \leq 0 \end{cases} \\ &= \begin{cases} \text{scale} * x, & x > 0\\ \text{scale} * \alpha * (e^{x} - 1), & x \leq 0 \end{cases} \end{aligned} SELU(x)=scale∗(max(0,x)+min(0,α∗(exp(x)−1)))={scale∗x,scale∗α∗(exp(x)−1),x>0x≤0={scale∗x,scale∗α∗(ex−1),x>0x≤0
with α = 1.6732632423543772848170429916717 \alpha = 1.6732632423543772848170429916717 α=1.6732632423543772848170429916717 and scale = 1.0507009873554804934193349852946 \text{scale} = 1.0507009873554804934193349852946 scale=1.0507009873554804934193349852946.
When using kaiming_normal or kaiming_normal_ for initialisation, nonlinearity='linear' should be used instead of nonlinearity='selu' in order to get Self-Normalizing Neural Networks.
See torch.nn.init.calculate_gain for more information.
More details can be found in the paper Self-Normalizing Neural Networks.
Basically, the SELU activation function multiplies scale ( > 1 > 1 >1) with the output of the elu function to ensure a slope larger than one for positive inputs.
The derivative of the ELU function:
d y d x = f ′ ( x ) = d ( { scale ∗ x , x > 0 scale ∗ α ∗ ( exp ( x ) − 1 ) , x ≤ 0 ) d x = { scale , x > 0 scale ∗ α ∗ exp ( x ) , x ≤ 0 = { scale , x > 0 scale ∗ α ∗ exp ( x ) − scale ∗ α + scale ∗ α , x ≤ 0 = { scale , x > 0 scale ∗ α ∗ ( exp ( x ) − 1 ) + scale ∗ α , x ≤ 0 = { scale , x > 0 scale ∗ α ∗ ( e x − 1 ) + scale ∗ α , x ≤ 0 \begin{aligned} \frac{dy}{dx} &= f'(x) \\ &= \frac{d \left( {\begin{cases} \text{scale} * x, & x > 0\\ \text{scale} * \alpha * (\exp(x) - 1), & x \leq 0 \end{cases}} \right) }{dx} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * \exp(x), & x \le 0 \\ \end{cases} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * \exp(x) - \text{scale} * \alpha + \text{scale} * \alpha, & x \le 0 \\ \end{cases} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * (\exp(x) - 1) + \text{scale} * \alpha, & x \le 0 \\ \end{cases} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * (e^{x} - 1) + \text{scale} * \alpha, & x \le 0 \\ \end{cases} \\ \end{aligned} dxdy=f′(x)=dxd({scale∗x,scale∗α∗(exp(x)−1),x>0x≤0)={scale,scale∗α∗exp(x),x>0x≤0={scale,scale∗α∗exp(x)−scale∗α+scale∗α,x>0x≤0={scale,scale∗α∗(exp(x)−1)+scale∗α,x>0x≤0={scale,scale∗α∗(ex−1)+scale∗α,x>0x≤0
1.1. Parameters
- inplace (bool, optional): can optionally do the operation in-place. Default:
False
1.2. Shape
-
Input : (
*), where*means any number of dimensions. -
Output : (
*), same shape as the input.

We can see that when scale = 1, SELU is simply ELU.

# !/usr/bin/env python
# coding=utf-8
import torch
from matplotlib import pyplot as plt
def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None, ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""
https://github.com/d2l-ai/d2l-en/blob/master/d2l/torch.py
"""
def has_one_axis(X): # True if X (tensor or list) has 1 axis
return ((hasattr(X, "ndim") and (X.ndim == 1)) or (isinstance(X, list) and (not hasattr(X[0], "__len__"))))
if has_one_axis(X): X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
# Set the default width and height of figures globally, in inches.
plt.rcParams['figure.figsize'] = figsize
if axes is None:
axes = plt.gca() # Get the current Axes
# Clear the Axes
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
axes.plot(x, y, fmt) if len(x) else axes.plot(y, fmt)
axes.set_xlabel(xlabel), axes.set_ylabel(ylabel) # Set the label for the x/y-axis
axes.set_xscale(xscale), axes.set_yscale(yscale) # Set the x/y-axis scale
axes.set_xlim(xlim), axes.set_ylim(ylim) # Set the x/y-axis view limits
if legend:
axes.legend(legend) # Place a legend on the Axes
# Configure the grid lines
axes.grid()
plt.show()
plt.savefig("yongqiang.png", transparent=True) # Save the current figure
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.nn.functional.selu(x)
plot(x.detach(), y.detach(), 'x', 'SELU(x)', figsize=(5, 2.5))
# Clear out previous gradients
# x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
plot(x.detach(), x.grad, 'x', 'gradient of SELU', figsize=(5, 2.5))
The SELU function:

The derivative of the SELU function:

2. SELU Function - Derivatives and Gradients (导数和梯度)
Notes
- Element-wise Multiplication (Hadamard Product) (
*operator ornumpy.multiply()): Multiplies corresponding elements of two arrays that must have the same shape (or be broadcastable to a common shape). - Matrix Multiplication (Dot Product) (
@operator ornumpy.matmul()ornumpy.dot()): Performs the standard linear algebra operation that requires specific dimension compatibility rules. (e.g., the number of columns in the first array must match the number of rows in the second).
2.1. PyTorch torch.nn.SELU(inplace=False)
# !/usr/bin/env python
# coding=utf-8
import torch
import torch.nn as nn
torch.set_printoptions(precision=6)
input = torch.tensor([[-1.5, 0.0, 1.5], [0.5, -2.0, 3.0]], dtype=torch.float, requires_grad=True)
print(f"input.requires_grad: {input.requires_grad}, input.shape: {input.shape}")
selu = nn.SELU()
forward_output = selu(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")
forward_output.backward(torch.ones_like(input), retain_graph=True)
print(f"\nbackward_output.shape: {input.grad.shape}")
print(f"Backward Pass Output:\n{input.grad}")
/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py
input.requires_grad: True, input.shape: torch.Size([2, 3])
forward_output.shape: torch.Size([2, 3])
Forward Pass Output:
tensor([[-1.365814, 0.000000, 1.576051],
[ 0.525351, -1.520167, 3.152103]], grad_fn=<EluBackward0>)
backward_output.shape: torch.Size([2, 3])
Backward Pass Output:
tensor([[0.392285, 1.758099, 1.050701],
[1.050701, 0.237933, 1.050701]])
Process finished with exit code 0
2.2. PyTorch torch.nn.SELU(inplace=False)
# !/usr/bin/env python
# coding=utf-8
import torch
import torch.nn as nn
torch.set_printoptions(precision=6)
input = torch.tensor([-1.5, 0.0, 1.5, 0.5, -2.0, 3.0], dtype=torch.float, requires_grad=True)
print(f"input.requires_grad: {input.requires_grad}, input.shape: {input.shape}")
selu = nn.SELU()
forward_output = selu(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")
forward_output.backward(torch.ones_like(input), retain_graph=True)
print(f"\nbackward_output.shape: {input.grad.shape}")
print(f"Backward Pass Output:\n{input.grad}")
/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py
input.requires_grad: True, input.shape: torch.Size([6])
forward_output.shape: torch.Size([6])
Forward Pass Output:
tensor([-1.365814, 0.000000, 1.576051, 0.525351, -1.520167, 3.152103],
grad_fn=<EluBackward0>)
backward_output.shape: torch.Size([6])
Backward Pass Output:
tensor([0.392285, 1.758099, 1.050701, 1.050701, 0.237933, 1.050701])
Process finished with exit code 0
2.3. Python SELU Function
# !/usr/bin/env python
# coding=utf-8
import numpy as np
# numpy.multiply:
# Multiply arguments element-wise
# Equivalent to x1 * x2 in terms of array broadcasting
class SELULayer:
"""
A class to represent an SELU activation layer for a neural network.
"""
def __init__(self):
self.alpha = 1.6732632423543772848170429916717
self.scale = 1.0507009873554804934193349852946
# Cache the input for the backward pass
self.input = None
def forward(self, input):
"""
Calculates the forward pass:
f(x) = scale * x if x > 0 else scale * alpha * (exp(x) - 1)
"""
self.input = input
output = self.scale * np.where(input > 0, input, self.alpha * (np.exp(input) - 1))
return output
def backward(self, upstream_gradient):
"""
f'(x) = scale if x > 0 else scale * alpha * exp(x)
The total gradient is the element-wise product of the upstream
gradient and the derivative of the SELU.
"""
selu_derivative = self.scale * np.where(self.input > 0, 1.0, self.alpha * np.exp(self.input))
print(f"\nselu_derivative.shape: {selu_derivative.shape}")
print(f"SELU Derivative:\n{selu_derivative}")
# Computes the gradient of the loss with respect to the input (dL/dx)
# Apply the chain rule: multiply the derivative by the upstream gradient
# dL/dx = dL/dy * dy/dx = upstream_gradient * f'(x)
downstream_gradient = upstream_gradient * selu_derivative
return downstream_gradient
selu_layer = SELULayer()
input = np.array([-1.5, 0.0, 1.5, 0.5, -2.0, 3.0], dtype=np.float32)
# Forward pass
forward_output = selu_layer.forward(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")
# Backward pass
upstream_gradient = np.ones(forward_output.shape) * 0.1
backward_output = selu_layer.backward(upstream_gradient)
print(f"\nbackward_output.shape: {backward_output.shape}")
print(f"Backward Pass Output:\n{backward_output}")
/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py
forward_output.shape: (6,)
Forward Pass Output:
[-1.3658143 0. 1.5760515 0.5253505 -1.5201665 3.152103 ]
selu_derivative.shape: (6,)
SELU Derivative:
[0.392285 1.7580993 1.050701 1.050701 0.23793288 1.050701 ]
backward_output.shape: (6,)
Backward Pass Output:
[0.0392285 0.17580993 0.1050701 0.1050701 0.02379329 0.1050701 ]
Process finished with exit code 0
2.4. Python SELU Function
# !/usr/bin/env python
# coding=utf-8
import numpy as np
# numpy.multiply:
# Multiply arguments element-wise
# Equivalent to x1 * x2 in terms of array broadcasting
class SELULayer:
"""
A class to represent an SELU activation layer for a neural network.
"""
def __init__(self):
self.alpha = 1.6732632423543772848170429916717
self.scale = 1.0507009873554804934193349852946
# Cache the input for the backward pass
self.input = None
def forward(self, input):
"""
Calculates the forward pass:
f(x) = scale * x if x > 0 else scale * alpha * (exp(x) - 1)
"""
self.input = input
output = self.scale * np.where(input > 0, input, self.alpha * (np.exp(input) - 1))
return output
def backward(self, upstream_gradient):
"""
f'(x) = scale if x > 0 else scale * alpha * exp(x)
The total gradient is the element-wise product of the upstream
gradient and the derivative of the SELU.
"""
selu_derivative = self.scale * np.where(self.input > 0, 1.0, self.alpha * np.exp(self.input))
print(f"\nselu_derivative.shape: {selu_derivative.shape}")
print(f"SELU Derivative:\n{selu_derivative}")
# Computes the gradient of the loss with respect to the input (dL/dx)
# Apply the chain rule: multiply the derivative by the upstream gradient
# dL/dx = dL/dy * dy/dx = upstream_gradient * f'(x)
downstream_gradient = upstream_gradient * selu_derivative
return downstream_gradient
selu_layer = SELULayer()
input = np.array([[-1.5, 0.0, 1.5], [0.5, -2.0, 3.0]], dtype=np.float32)
# Forward pass
forward_output = selu_layer.forward(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")
# Backward pass
upstream_gradient = np.ones(forward_output.shape) * 0.1
backward_output = selu_layer.backward(upstream_gradient)
print(f"\nbackward_output.shape: {backward_output.shape}")
print(f"Backward Pass Output:\n{backward_output}")
/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py
forward_output.shape: (2, 3)
Forward Pass Output:
[[-1.3658143 0. 1.5760515]
[ 0.5253505 -1.5201665 3.152103 ]]
selu_derivative.shape: (2, 3)
SELU Derivative:
[[0.392285 1.7580993 1.050701 ]
[1.050701 0.23793288 1.050701 ]]
backward_output.shape: (2, 3)
Backward Pass Output:
[[0.0392285 0.17580993 0.1050701 ]
[0.1050701 0.02379329 0.1050701 ]]
Process finished with exit code 0
References
1\] Yongqiang Cheng (程永强),