SELU Function - Derivatives and Gradients (导数和梯度)

SELU Function - Derivatives and Gradients {导数和梯度}

  • [1. SELU (Scaled Exponential Linear Unit) Function](#1. SELU (Scaled Exponential Linear Unit) Function)
    • [1.1. Parameters](#1.1. Parameters)
    • [1.2. Shape](#1.2. Shape)
  • [2. SELU Function - Derivatives and Gradients (导数和梯度)](#2. SELU Function - Derivatives and Gradients (导数和梯度))
    • [2.1. PyTorch `torch.nn.SELU(inplace=False)`](#2.1. PyTorch torch.nn.SELU(inplace=False))
    • [2.2. PyTorch `torch.nn.SELU(inplace=False)`](#2.2. PyTorch torch.nn.SELU(inplace=False))
    • [2.3. Python SELU Function](#2.3. Python SELU Function)
    • [2.4. Python SELU Function](#2.4. Python SELU Function)
  • References

1. SELU (Scaled Exponential Linear Unit) Function

class torch.nn.SELU(inplace=False)
https://docs.pytorch.org/docs/stable/generated/torch.nn.SELU.html

torch.nn.functional.selu(input, inplace=False) -> Tensor
https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.selu.html

https://github.com/pytorch/pytorch/blob/v2.9.1/torch/nn/modules/activation.py

class torch.nn.SELU(inplace=False)

Applies the SELU function element-wise.

Method described in the paper: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).

The definition of the ELU function:

SELU ( x ) = scale ∗ ( max ⁡ ( 0 , x ) + min ⁡ ( 0 , α ∗ ( exp ⁡ ( x ) − 1 ) ) ) = { scale ∗ x , x > 0 scale ∗ α ∗ ( exp ⁡ ( x ) − 1 ) , x ≤ 0 = { scale ∗ x , x > 0 scale ∗ α ∗ ( e x − 1 ) , x ≤ 0 \begin{aligned} \text{SELU}(x) &= \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) \\ &= \begin{cases} \text{scale} * x, & x > 0\\ \text{scale} * \alpha * (\exp(x) - 1), & x \leq 0 \end{cases} \\ &= \begin{cases} \text{scale} * x, & x > 0\\ \text{scale} * \alpha * (e^{x} - 1), & x \leq 0 \end{cases} \end{aligned} SELU(x)=scale∗(max(0,x)+min(0,α∗(exp(x)−1)))={scale∗x,scale∗α∗(exp(x)−1),x>0x≤0={scale∗x,scale∗α∗(ex−1),x>0x≤0

with α = 1.6732632423543772848170429916717 \alpha = 1.6732632423543772848170429916717 α=1.6732632423543772848170429916717 and scale = 1.0507009873554804934193349852946 \text{scale} = 1.0507009873554804934193349852946 scale=1.0507009873554804934193349852946.

When using kaiming_normal or kaiming_normal_ for initialisation, nonlinearity='linear' should be used instead of nonlinearity='selu' in order to get Self-Normalizing Neural Networks.

See torch.nn.init.calculate_gain for more information.

More details can be found in the paper Self-Normalizing Neural Networks.

Basically, the SELU activation function multiplies scale ( > 1 > 1 >1) with the output of the elu function to ensure a slope larger than one for positive inputs.

The derivative of the ELU function:

d y d x = f ′ ( x ) = d ( { scale ∗ x , x > 0 scale ∗ α ∗ ( exp ⁡ ( x ) − 1 ) , x ≤ 0 ) d x = { scale , x > 0 scale ∗ α ∗ exp ⁡ ( x ) , x ≤ 0 = { scale , x > 0 scale ∗ α ∗ exp ⁡ ( x ) − scale ∗ α + scale ∗ α , x ≤ 0 = { scale , x > 0 scale ∗ α ∗ ( exp ⁡ ( x ) − 1 ) + scale ∗ α , x ≤ 0 = { scale , x > 0 scale ∗ α ∗ ( e x − 1 ) + scale ∗ α , x ≤ 0 \begin{aligned} \frac{dy}{dx} &= f'(x) \\ &= \frac{d \left( {\begin{cases} \text{scale} * x, & x > 0\\ \text{scale} * \alpha * (\exp(x) - 1), & x \leq 0 \end{cases}} \right) }{dx} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * \exp(x), & x \le 0 \\ \end{cases} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * \exp(x) - \text{scale} * \alpha + \text{scale} * \alpha, & x \le 0 \\ \end{cases} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * (\exp(x) - 1) + \text{scale} * \alpha, & x \le 0 \\ \end{cases} \\ &= \begin{cases} \text{scale}, & x > 0 \\ \text{scale} * \alpha * (e^{x} - 1) + \text{scale} * \alpha, & x \le 0 \\ \end{cases} \\ \end{aligned} dxdy=f′(x)=dxd({scale∗x,scale∗α∗(exp(x)−1),x>0x≤0)={scale,scale∗α∗exp(x),x>0x≤0={scale,scale∗α∗exp(x)−scale∗α+scale∗α,x>0x≤0={scale,scale∗α∗(exp(x)−1)+scale∗α,x>0x≤0={scale,scale∗α∗(ex−1)+scale∗α,x>0x≤0

1.1. Parameters

  • inplace (bool, optional): can optionally do the operation in-place. Default: False

1.2. Shape

  • Input : (*), where * means any number of dimensions.

  • Output : (*), same shape as the input.

We can see that when scale = 1, SELU is simply ELU.

复制代码
# !/usr/bin/env python
# coding=utf-8

import torch
from matplotlib import pyplot as plt


def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None, ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    """
    https://github.com/d2l-ai/d2l-en/blob/master/d2l/torch.py
    """

    def has_one_axis(X):  # True if X (tensor or list) has 1 axis
        return ((hasattr(X, "ndim") and (X.ndim == 1)) or (isinstance(X, list) and (not hasattr(X[0], "__len__"))))

    if has_one_axis(X): X = [X]

    if Y is None:
        X, Y = [[]] * len(X), X
    elif has_one_axis(Y):
        Y = [Y]

    if len(X) != len(Y):
        X = X * len(Y)

    # Set the default width and height of figures globally, in inches.
    plt.rcParams['figure.figsize'] = figsize

    if axes is None:
        axes = plt.gca()  # Get the current Axes

    # Clear the Axes
    axes.cla()

    for x, y, fmt in zip(X, Y, fmts):
        axes.plot(x, y, fmt) if len(x) else axes.plot(y, fmt)

    axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)  # Set the label for the x/y-axis
    axes.set_xscale(xscale), axes.set_yscale(yscale)  # Set the x/y-axis scale
    axes.set_xlim(xlim), axes.set_ylim(ylim)  # Set the x/y-axis view limits

    if legend:
        axes.legend(legend)  # Place a legend on the Axes

    # Configure the grid lines
    axes.grid()

    plt.show()
    plt.savefig("yongqiang.png", transparent=True)  # Save the current figure


x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.nn.functional.selu(x)
plot(x.detach(), y.detach(), 'x', 'SELU(x)', figsize=(5, 2.5))

# Clear out previous gradients
# x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
plot(x.detach(), x.grad, 'x', 'gradient of SELU', figsize=(5, 2.5))

The SELU function:

The derivative of the SELU function:

2. SELU Function - Derivatives and Gradients (导数和梯度)

Notes

  • Element-wise Multiplication (Hadamard Product) (* operator or numpy.multiply()): Multiplies corresponding elements of two arrays that must have the same shape (or be broadcastable to a common shape).
  • Matrix Multiplication (Dot Product) (@ operator or numpy.matmul() or numpy.dot()): Performs the standard linear algebra operation that requires specific dimension compatibility rules. (e.g., the number of columns in the first array must match the number of rows in the second).

2.1. PyTorch torch.nn.SELU(inplace=False)

复制代码
# !/usr/bin/env python
# coding=utf-8

import torch
import torch.nn as nn

torch.set_printoptions(precision=6)

input = torch.tensor([[-1.5, 0.0, 1.5], [0.5, -2.0, 3.0]], dtype=torch.float, requires_grad=True)

print(f"input.requires_grad: {input.requires_grad}, input.shape: {input.shape}")

selu = nn.SELU()
forward_output = selu(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

forward_output.backward(torch.ones_like(input), retain_graph=True)

print(f"\nbackward_output.shape: {input.grad.shape}")
print(f"Backward Pass Output:\n{input.grad}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py 
input.requires_grad: True, input.shape: torch.Size([2, 3])

forward_output.shape: torch.Size([2, 3])
Forward Pass Output:
tensor([[-1.365814,  0.000000,  1.576051],
        [ 0.525351, -1.520167,  3.152103]], grad_fn=<EluBackward0>)

backward_output.shape: torch.Size([2, 3])
Backward Pass Output:
tensor([[0.392285, 1.758099, 1.050701],
        [1.050701, 0.237933, 1.050701]])

Process finished with exit code 0

2.2. PyTorch torch.nn.SELU(inplace=False)

复制代码
# !/usr/bin/env python
# coding=utf-8

import torch
import torch.nn as nn

torch.set_printoptions(precision=6)

input = torch.tensor([-1.5, 0.0, 1.5, 0.5, -2.0, 3.0], dtype=torch.float, requires_grad=True)

print(f"input.requires_grad: {input.requires_grad}, input.shape: {input.shape}")

selu = nn.SELU()
forward_output = selu(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

forward_output.backward(torch.ones_like(input), retain_graph=True)

print(f"\nbackward_output.shape: {input.grad.shape}")
print(f"Backward Pass Output:\n{input.grad}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py 
input.requires_grad: True, input.shape: torch.Size([6])

forward_output.shape: torch.Size([6])
Forward Pass Output:
tensor([-1.365814,  0.000000,  1.576051,  0.525351, -1.520167,  3.152103],
       grad_fn=<EluBackward0>)

backward_output.shape: torch.Size([6])
Backward Pass Output:
tensor([0.392285, 1.758099, 1.050701, 1.050701, 0.237933, 1.050701])

Process finished with exit code 0

2.3. Python SELU Function

复制代码
# !/usr/bin/env python
# coding=utf-8

import numpy as np


# numpy.multiply:
# Multiply arguments element-wise
# Equivalent to x1 * x2 in terms of array broadcasting

class SELULayer:
    """
    A class to represent an SELU activation layer for a neural network.
    """

    def __init__(self):
        self.alpha = 1.6732632423543772848170429916717
        self.scale = 1.0507009873554804934193349852946
        # Cache the input for the backward pass
        self.input = None

    def forward(self, input):
        """
        Calculates the forward pass:
        f(x) = scale * x if x > 0 else scale * alpha * (exp(x) - 1)
        """

        self.input = input
        output = self.scale * np.where(input > 0, input, self.alpha * (np.exp(input) - 1))
        return output

    def backward(self, upstream_gradient):
        """
        f'(x) = scale if x > 0 else scale * alpha * exp(x)
        The total gradient is the element-wise product of the upstream
        gradient and the derivative of the SELU.
        """

        selu_derivative = self.scale * np.where(self.input > 0, 1.0, self.alpha * np.exp(self.input))
        print(f"\nselu_derivative.shape: {selu_derivative.shape}")
        print(f"SELU Derivative:\n{selu_derivative}")

        # Computes the gradient of the loss with respect to the input (dL/dx)
        # Apply the chain rule: multiply the derivative by the upstream gradient
        # dL/dx = dL/dy * dy/dx = upstream_gradient * f'(x)
        downstream_gradient = upstream_gradient * selu_derivative
        return downstream_gradient


selu_layer = SELULayer()

input = np.array([-1.5, 0.0, 1.5, 0.5, -2.0, 3.0], dtype=np.float32)

# Forward pass
forward_output = selu_layer.forward(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

# Backward pass
upstream_gradient = np.ones(forward_output.shape) * 0.1
backward_output = selu_layer.backward(upstream_gradient)
print(f"\nbackward_output.shape: {backward_output.shape}")
print(f"Backward Pass Output:\n{backward_output}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py 

forward_output.shape: (6,)
Forward Pass Output:
[-1.3658143  0.         1.5760515  0.5253505 -1.5201665  3.152103 ]

selu_derivative.shape: (6,)
SELU Derivative:
[0.392285   1.7580993  1.050701   1.050701   0.23793288 1.050701  ]

backward_output.shape: (6,)
Backward Pass Output:
[0.0392285  0.17580993 0.1050701  0.1050701  0.02379329 0.1050701 ]

Process finished with exit code 0

2.4. Python SELU Function

复制代码
# !/usr/bin/env python
# coding=utf-8

import numpy as np


# numpy.multiply:
# Multiply arguments element-wise
# Equivalent to x1 * x2 in terms of array broadcasting

class SELULayer:
    """
    A class to represent an SELU activation layer for a neural network.
    """

    def __init__(self):
        self.alpha = 1.6732632423543772848170429916717
        self.scale = 1.0507009873554804934193349852946
        # Cache the input for the backward pass
        self.input = None

    def forward(self, input):
        """
        Calculates the forward pass:
        f(x) = scale * x if x > 0 else scale * alpha * (exp(x) - 1)
        """

        self.input = input
        output = self.scale * np.where(input > 0, input, self.alpha * (np.exp(input) - 1))
        return output

    def backward(self, upstream_gradient):
        """
        f'(x) = scale if x > 0 else scale * alpha * exp(x)
        The total gradient is the element-wise product of the upstream
        gradient and the derivative of the SELU.
        """

        selu_derivative = self.scale * np.where(self.input > 0, 1.0, self.alpha * np.exp(self.input))
        print(f"\nselu_derivative.shape: {selu_derivative.shape}")
        print(f"SELU Derivative:\n{selu_derivative}")

        # Computes the gradient of the loss with respect to the input (dL/dx)
        # Apply the chain rule: multiply the derivative by the upstream gradient
        # dL/dx = dL/dy * dy/dx = upstream_gradient * f'(x)
        downstream_gradient = upstream_gradient * selu_derivative
        return downstream_gradient


selu_layer = SELULayer()

input = np.array([[-1.5, 0.0, 1.5], [0.5, -2.0, 3.0]], dtype=np.float32)

# Forward pass
forward_output = selu_layer.forward(input)
print(f"\nforward_output.shape: {forward_output.shape}")
print(f"Forward Pass Output:\n{forward_output}")

# Backward pass
upstream_gradient = np.ones(forward_output.shape) * 0.1
backward_output = selu_layer.backward(upstream_gradient)
print(f"\nbackward_output.shape: {backward_output.shape}")
print(f"Backward Pass Output:\n{backward_output}")

/home/yongqiang/miniconda3/bin/python /home/yongqiang/quantitative_analysis/selu.py 

forward_output.shape: (2, 3)
Forward Pass Output:
[[-1.3658143  0.         1.5760515]
 [ 0.5253505 -1.5201665  3.152103 ]]

selu_derivative.shape: (2, 3)
SELU Derivative:
[[0.392285   1.7580993  1.050701  ]
 [1.050701   0.23793288 1.050701  ]]

backward_output.shape: (2, 3)
Backward Pass Output:
[[0.0392285  0.17580993 0.1050701 ]
 [0.1050701  0.02379329 0.1050701 ]]

Process finished with exit code 0

References

1\] Yongqiang Cheng (程永强), \[2\] 动手学深度学习, \[3\] Deep Learning Tutorials, \[4\] Gradient boosting performs gradient descent, \[5\] Matrix calculus, \[6\] Artificial Inteligence,

相关推荐
Yongqiang Cheng6 天前
ELU Function - Derivatives and Gradients (导数和梯度)
梯度·导数·gradients·derivatives·elu
Yongqiang Cheng7 天前
Tanh Function - Derivatives and Gradients (导数和梯度)
梯度·导数·tanh·gradients·derivatives
Yongqiang Cheng8 天前
ReLU Function and Leaky ReLU Function - Derivatives and Gradients (导数和梯度)
梯度·导数·relu·gradients·derivatives·leaky relu
小毅&Nora8 天前
【数学】【微积分】 ③ 导数的核心应用:从变化率到现实世界优化
微积分·导数
Yongqiang Cheng16 天前
Mean Absolute Error (MAE) Loss Function - Derivatives and Gradients (导数和梯度)
梯度·导数·mae·gradients·loss function·derivatives
噜~噜~噜~22 天前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
西西弗Sisyphus1 个月前
微积分中 为什么 dy/dx 有时候拆开,有时候是一个整体?
微积分·极限·导数·微分
xian_wwq2 个月前
【学习笔记】深度学习中梯度消失和爆炸问题及其解决方案研究
人工智能·深度学习·梯度
CLubiy2 个月前
【研究生随笔】Pytorch中的线性代数(微分)
人工智能·pytorch·深度学习·线性代数·梯度·微分