一、简介
驱动方面一共有三种设计方式,一是将物理设备资源和其驱动操作写在同一个驱动文件里;二是BUS总线+platform_device+platform_driver的框架,三是使用现代规范的设备树方式(其底层是从设备树提取物理设备资源,然后由内核自动创建platform_device相关设备给驱动部分使用)+platform_driver。
重点是:基于正确的框架以及流程而设计开发驱动。不要嫌麻烦,如果想要持续性进行基于Linux内核的开发,就必须要懂得在Linux下的开发规范以及其框架。
注:在基于Linux内核的开发中,学习的东西能够帮助你极大地增强你程序设计的解耦能力,即不同的硬件资源(寄存器之类的具体资源)+对应的同类型硬件资源的对应驱动(GPIO类型驱动)+对于应用层面的不同模块的模块代码设计(GPIO类型下的不同输入输出模式下的ADC、EXTI对接不同硬件模块)------三层解耦思维。
1.1 原始写法

cpp
//原始的驱动写法
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/uaccess.h>
#include <linux/device.h>
#include <asm/io.h>
static int major;
static struct class *led_class;
/* registers */
// IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 地址:0x02290000 + 0x14
static volatile unsigned int *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3;
// GPIO5_GDIR 地址:0x020AC004
static volatile unsigned int *GPIO5_GDIR;
//GPIO5_DR 地址:0x020AC000
static volatile unsigned int *GPIO5_DR;
static ssize_t led_write(struct file *filp, const char __user *buf,
size_t count, loff_t *ppos)
{
char val;
int ret;
/* copy_from_user : get data from app */
ret = copy_from_user(&val, buf, 1);
/* to set gpio register: out 1/0 */
if (val)
{
/* set gpio to let led on */
*GPIO5_DR &= ~(1<<3);
}
else
{
/* set gpio to let led off */
*GPIO5_DR |= (1<<3);
}
return 1;
}
static int led_open(struct inode *inode, struct file *filp)
{
/* enable gpio5
* configure gpio5_io3 as gpio
* configure gpio5_io3 as output
*/
*IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 &= ~0xf;
*IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 |= 0x5;
*GPIO5_GDIR |= (1<<3);
return 0;
}
static struct file_operations led_fops = {
.owner = THIS_MODULE,
.write = led_write,
.open = led_open,
};
/* 入口函数 */
static int __init led_init(void)
{
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
major = register_chrdev(0, "100ask_led", &led_fops);
/* ioremap */
// IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 地址:0x02290000 + 0x14
IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = ioremap(0x02290000 + 0x14, 4);
// GPIO5_GDIR 地址:0x020AC004
GPIO5_GDIR = ioremap(0x020AC004, 4);
//GPIO5_DR 地址:0x020AC000
GPIO5_DR = ioremap(0x020AC000, 4);
led_class = class_create(THIS_MODULE, "myled");
device_create(led_class, NULL, MKDEV(major, 0), NULL, "myled"); /* /dev/myled */
return 0;
}
static void __exit led_exit(void)
{
iounmap(IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3);
iounmap(GPIO5_GDIR);
iounmap(GPIO5_DR);
device_destroy(led_class, MKDEV(major, 0));
class_destroy(led_class);
unregister_chrdev(major, "100ask_led");
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
1.2 总线设备驱动模型(platform_device+platform_driver的框架)
在platform_device注入了资源,类似于在总线上挂载了物理设备资源


1.3 设备树模型(dts+platform_driver的框架)


由父节点和子节点都具备compatible属性才能支持直接转化为platform_device
二、基于BUS总线+platform_device+platform_driver框架的驱动代码


(1)工作流程
这里简单解释BUS总线+platform_device+platform_driver框架的工作流程



2.1 驱动代码:使用platform_device管理具体的设备资源
gpio_led_pdev_drv.c
cpp
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/platform_device.h>
#include <linux/of.h>
/* GPIO3_0 */
/* bit[31:16] = group */
/* bit[15:0] = which pin */
#define GROUP(x) (x>>16)
#define PIN(x) (x&0xFFFF)
#define GROUP_PIN(g,p) ((g<<16) | (p))
/* 定义LED相关寄存器物理地址资源 */
#define IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3_PHYS 0x02290000 + 0x14
#define GPIO5_GDIR_PHYS 0x020AC004
#define GPIO5_DR_PHYS 0x020AC000
// 在不使用设备树注册物理设备资源时,需要手动使用platform_device来注册物理设备资源
/* 定义LED引脚资源(与设备树作用相同) */
// 很多人不知道platform_device的资源是如何匹配的, 这里需要手动指定资源的start和flags
/* 资源定义:包含LED所需的所有寄存器地址 */
static struct resource led_resources[] = {
{
.start = IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3_PHYS,
.end = IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3_PHYS + 3,
.flags = IORESOURCE_MEM,
.name = "led_mux_reg",
},
{
.start = GPIO5_GDIR_PHYS,
.end = GPIO5_GDIR_PHYS + 3,
.flags = IORESOURCE_MEM,
.name = "led_gdir_reg",
},
{
.start = GPIO5_DR_PHYS,
.end = GPIO5_DR_PHYS + 3,
.flags = IORESOURCE_MEM,
.name = "led_dr_reg",
},
};
static void led_dev_release(struct device *dev)
{
printk("led platform device released\n");
}
/* 定义平台设备 */
static struct platform_device gpio_led_pdev = {
.name = "100ask_led", /* 用于与平台驱动匹配 */
.id = -1,
.num_resources = ARRAY_SIZE(led_resources),
.resource = led_resources,
.dev = {
.release = led_dev_release,
},
};
static int __init gpio_led_pdev_init(void)
{
int err;
err = platform_device_register(&gpio_led_pdev); //注册platform_device物理设备
return 0;
}
static void __exit gpio_led_pdev_exit(void)
{
platform_device_unregister(&gpio_led_pdev);
}
module_init(gpio_led_pdev_init);
module_exit(gpio_led_pdev_exit);
MODULE_LICENSE("GPL");
2.2 驱动代码:编写LED字符设备驱动,使用字符设备驱动给用户提供操作接口
led_opr.h
cpp
#ifndef _LED_OPR_H
#define _LED_OPR_H
struct led_operations {
int (*init) (int which); /* 初始化LED, which-哪个LED */
int (*ctl) (int which, char status); /* 控制LED, which-哪个LED, status:1-亮,0-灭 */
};
struct led_operations *get_board_led_opr(void);
#endif
gpio_led_chardev_drv.h
cpp
#ifndef __GPIO_LED_CHARDEV_DRV_H
#define __GPIO_LED_CHARDEV_DRV_H
#include "led_opr.h"
void led_class_create_device(int minor);
void led_class_destroy_device(int minor);
void register_led_operations(struct led_operations *opr);
#endif
gpio_led_chardev_drv.c
cpp
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include "gpio_led_chardev_drv.h"
// 对于led字符设备驱动,需要实现open, release, read, write等函数
// 是基于 物理设备的GPIO引脚的platform_device ---> 字符设备操作接口驱动封装 ---> 使用platform_driver来注册字符设备驱动和匹配物理设备
static int major = 0;
static struct class *led_class;
struct led_operations *p_led_opr;
#define MIN(a, b) (a < b ? a : b)
void led_class_create_device(int minor)
{
device_create(led_class, NULL, MKDEV(major, minor), NULL, "gpio_led_chardev%d", minor); /* /dev/gpio_led_chardev0,1,... */
}
void led_class_destroy_device(int minor)
{
device_destroy(led_class, MKDEV(major, minor));
}
void register_led_operations(struct led_operations *opr)
{
p_led_opr = opr;
}
EXPORT_SYMBOL(led_class_create_device);
EXPORT_SYMBOL(led_class_destroy_device);
EXPORT_SYMBOL(register_led_operations);
static ssize_t led_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
return 0;
}
static ssize_t led_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
int err;
char status;
struct inode *inode = file_inode(file);
int minor = iminor(inode);
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
err = copy_from_user(&status, buf, 1);
/* 根据次设备号和status控制LED */
p_led_opr->ctl(minor, status);
return 1;
}
static int led_drv_open (struct inode *node, struct file *file)
{
int minor = iminor(node);
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
/* 根据次设备号初始化LED */
p_led_opr->init(minor); // p_led_opr->init 其具体实现在上一层的gpio_led_pdrv_drv.c
return 0;
}
static int led_drv_close (struct inode *node, struct file *file)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
return 0;
}
static struct file_operations gpio_led_chardev_fops = {
.owner = THIS_MODULE,
.open = led_drv_open,
.read = led_drv_read,
.write = led_drv_write,
.release = led_drv_close,
};
static int __init gpio_led_chardev_init(void)
{
int err;
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
major = register_chrdev(0, "gpio_led_chardev", &gpio_led_chardev_fops); /* 注册字符设备 /dev/gpio_led_chardev */
led_class = class_create(THIS_MODULE, "gpio_led_chardev_class"); // 创建类 /sys/class/gpio_led_chardev_class
err = PTR_ERR(led_class);
if (IS_ERR(led_class)) {
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
unregister_chrdev(major, "gpio_led_chardev");
return -1;
}
return 0;
}
static void __exit gpio_led_chardev_exit(void)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
class_destroy(led_class);
unregister_chrdev(major, "gpio_led_chardev");
}
module_init(gpio_led_chardev_init);
module_exit(gpio_led_chardev_exit);
MODULE_LICENSE("GPL");
2.3 驱动代码:使用platform_driver管理对应的同类型的设备驱动,同时其中接入LED字符设备驱动接口,从而达到操作字符设备控制开发板的实际硬件
gpio_led_pdrv_drv.c
cpp
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/platform_device.h> // 包含platform设备模型相关定义
#include <linux/io.h> // 包含ioremap/iounmap等函数定义
#include <linux/of.h> // 包含设备树相关结构体定义(of_device_id)
#include "led_opr.h"
#include "gpio_led_chardev_drv.h"
/* GPIO3_0 */
/* bit[31:16] = group */
/* bit[15:0] = which pin */
#define GROUP(x) (x>>16)
#define PIN(x) (x&0xFFFF)
#define GROUP_PIN(g,p) ((g<<16) | (p))
/* 保存映射后的寄存器虚拟地址 */
static volatile unsigned int *g_mux_reg;
static volatile unsigned int *g_gdir_reg;
static volatile unsigned int *g_dr_reg;
/* LED初始化:配置GPIO复用和方向 */
static int led_init(int which)
{
printk("led_init: configure LED hardware\n");
/* 配置复用为GPIO功能 */
*g_mux_reg &= ~0xf;
*g_mux_reg |= 0x5;
/* 配置为输出模式 */
*g_gdir_reg |= (1 << 3); // GPIO5_3输出
return 0;
}
/* LED控制:亮/灭 */
static int led_ctl(int which, char status)
{
printk("led_ctl: set LED %s\n", status == '1' ? "on" : "off");
if (status == '1') {
/* 点亮:清除bit3 */
*g_dr_reg &= ~(1 << 3);
} else if (status == '0') {
/* 熄灭:设置bit3 */
*g_dr_reg |= (1 << 3);
}
return 0;
}
/* 定义LED操作接口 */
static struct led_operations led_opr = {
.init = led_init,
.ctl = led_ctl,
};
// platform_driver需要匹配设备树或者platform_device的实际设备资源, 使用platform_driver_register()注册平台驱动
struct led_operations *get_board_led_opr(void)
{
return &led_opr;
}
/* 平台驱动probe函数:匹配设备后执行 */
static int gpio_led_pdrv_probe(struct platform_device *pdev)
{
struct resource *res;
printk("led_pdrv_probe: device matched\n");
/* 获取并映射复用寄存器资源 */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "led_mux_reg");
g_mux_reg = ioremap(res->start, resource_size(res));
/* 获取并映射方向寄存器资源 */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "led_gdir_reg");
g_gdir_reg = ioremap(res->start, resource_size(res));
/* 获取并映射数据寄存器资源 */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "led_dr_reg");
g_dr_reg = ioremap(res->start, resource_size(res));
/* 注册LED操作接口 */
register_led_operations(&led_opr);
/* 创建字符设备节点 */
led_class_create_device(0); // 次设备号0
return 0;
}
static int gpio_led_pdrv_remove(struct platform_device *pdev)
{
printk("led_pdrv_remove: device removed\n");
/* 销毁字符设备节点 */
led_class_destroy_device(0);
/* 解除地址映射 */
iounmap(g_mux_reg);
iounmap(g_gdir_reg);
iounmap(g_dr_reg);
return 0;
}
/* 定义平台驱动 */
static struct platform_driver gpio_led_pdrv = {
.probe = gpio_led_pdrv_probe,
.remove = gpio_led_pdrv_remove,
.driver = {
.name = "100ask_led", /* 与平台设备name匹配 */
},
};
static int __init gpio_led_pdrv_init(void)
{
int err;
err = platform_driver_register(&gpio_led_pdrv);
return 0;
}
static void __exit gpio_led_pdrv_exit(void)
{
platform_driver_unregister(&gpio_led_pdrv);
}
module_init(gpio_led_pdrv_init);
module_exit(gpio_led_pdrv_exit);
MODULE_LICENSE("GPL");
2.4 应用代码:使用LED字符设备驱动编写应用程序
cpp
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
int main(int argc, char **argv)
{
int fd;
char status;
if(argc != 3)
{
printf("Usage: %s <dev> <status>\n", argv[0]);
return -1;
}
fd = open(argv[1], O_RDWR);
if(fd < 0)
{
printf("open %s failed\n", argv[1]);
return -1;
}
if(0 == strcmp(argv[2], "on"))
{
status = '1';
write(fd, &status, 1);
}else if(0 == strcmp(argv[2], "off"))
{
status = '0';
write(fd, &status, 1);
}
close(fd);
return 0;
}
2.5 makefile
cpp
# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH, 比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH, 比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
# 请参考各开发板的高级用户使用手册
# export ARCH=arm
# export CROSS_COMPILE=arm-linux-gnueabihf-
# export PATH=$PATH:/home/zky/ProjectsHub/Linux_Projects/100ask_imx6ull_pro_Env/Imx6ull_Pro_Programs_Workspaces/ToolChain/gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-gnueabihf/bin
KERN_DIR = /home/zky/ProjectsHub/Linux_Projects/100ask_imx6ull_pro_Env/100ask_imx6ull-sdk/Linux-4.9.88
all:
make -C $(KERN_DIR) M=`pwd` modules
$(CROSS_COMPILE)gcc -o app_led app_led.c
clean:
make -C $(KERN_DIR) M=`pwd` modules clean
rm -rf modules.order
# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.o
obj-m += gpio_led_pdev_drv.o gpio_led_pdrv_drv.o gpio_led_chardev_drv.o
三、上机测试
3.1 编译
cpp
export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabihf-
export PATH=$PATH:/home/zky/ProjectsHub/Linux_Projects/100ask_imx6ull_pro_Env/Imx6ull_Pro_Programs_Workspaces/ToolChain/gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-gnueabihf/bin
make
adb push app_led /root/Imx6ull_Pro_Examples_Workspaces_DIR/EX2_Linux_Driver_Layer_DIR/E4_led_adv_DIR
adb push gpio_led_pdev_drv.ko /root/Imx6ull_Pro_Examples_Workspaces_DIR/EX2_Linux_Driver_Layer_DIR/E4_led_adv_DIR
adb push gpio_led_chardev_drv.ko /root/Imx6ull_Pro_Examples_Workspaces_DIR/EX2_Linux_Driver_Layer_DIR/E4_led_adv_DIR
adb push gpio_led_pdrv_drv.ko /root/Imx6ull_Pro_Examples_Workspaces_DIR/EX2_Linux_Driver_Layer_DIR/E4_led_adv_DIR
adb shell
cd /root/Imx6ull_Pro_Examples_Workspaces_DIR/EX2_Linux_Driver_Layer_DIR/E4_led_adv_DIR
lsmod
insmod gpio_led_pdev_drv.ko
insmod gpio_led_pdev_drv.ko
insmod gpio_led_pdev_drv.ko
lsmod
# 注册字符设备成功
ls /dev/gpio_led_*
# 使用应用程序操作字符设备
./app_led /dev/gpio_led_chardev0 on
./app_led /dev/gpio_led_chardev0 off
3.2 上机
实际中确实操作字符设备并点亮了led
cpp
# 开启内核的printk信息打印功能,但是这个只能在串口那里看到,而adb口不会输出信息
echo "7 4 1 7" > /proc/sys/kernel/printk


注:切记不要死记硬背,建议实际上手去亲身体会并理解。