接续第一部分(第1-5章)
发布日期:2025年12月21日
作者:DREAMVFIA_OSPM
🎨 第六章:量子生成对抗网络 - 创造力的量子飞跃
6.1 量子GAN理论框架
经典GAN架构:
生成器 G:噪声 z → 假样本 G(z)
判别器 D:样本 x → 真实概率 D(x)
目标函数:
min_G max_D V(D,G) = E_x[log D(x)] + E_z[log(1-D(G(z)))]
量子GAN(QGAN)创新:
-
使用量子电路作为生成器
-
量子态叠加实现并行生成
-
量子纠缠增强样本多样性
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.library import TwoLocal
from qiskit_machine_learning.algorithms import NumPyDiscriminator
import torch
import torch.nn as nnclass QuantumGenerator:
"""量子生成器"""def __init__(self, n_qubits, n_layers=3): self.n_qubits = n_qubits self.n_layers = n_layers # 构建参数化量子电路 self.circuit = TwoLocal( n_qubits, rotation_blocks=['ry', 'rz'], entanglement_blocks='cz', entanglement='full', reps=n_layers ) self.num_params = self.circuit.num_parameters def generate(self, noise, params): """ 生成量子态 noise: 经典噪声向量 (用于初始化) params: 量子电路参数 """ qc = QuantumCircuit(self.n_qubits) # 1. 噪声编码(角度编码) for i in range(min(len(noise), self.n_qubits)): qc.ry(noise[i] * np.pi, i) # 2. 应用参数化电路 qc.compose(self.circuit.bind_parameters(params), inplace=True) # 3. 测量获得经典数据 qc.measure_all() # 模拟执行 from qiskit_aer import AerSimulator from qiskit import transpile simulator = AerSimulator() compiled = transpile(qc, simulator) job = simulator.run(compiled, shots=1000) counts = job.result().get_counts() # 转换为概率分布 total_shots = sum(counts.values()) probabilities = np.zeros(2**self.n_qubits) for bitstring, count in counts.items(): index = int(bitstring, 2) probabilities[index] = count / total_shots return probabilitiesclass ClassicalDiscriminator(nn.Module):
"""经典判别器(神经网络)"""def __init__(self, input_size, hidden_size=64): super().__init__() self.network = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Dropout(0.3), nn.Linear(hidden_size, hidden_size // 2), nn.ReLU(), nn.Dropout(0.3), nn.Linear(hidden_size // 2, 1), nn.Sigmoid() ) def forward(self, x): return self.network(x)class QGAN:
"""量子生成对抗网络"""def __init__(self, n_qubits, n_layers=3, lr_g=0.01, lr_d=0.001): self.generator = QuantumGenerator(n_qubits, n_layers) self.discriminator = ClassicalDiscriminator(2**n_qubits) # 优化器 self.g_params = np.random.uniform(0, 2*np.pi, self.generator.num_params) self.d_optimizer = torch.optim.Adam( self.discriminator.parameters(), lr=lr_d ) self.lr_g = lr_g def train_step(self, real_data, noise_batch): """训练一步""" batch_size = len(noise_batch) # ===== 训练判别器 ===== self.d_optimizer.zero_grad() # 真实数据 real_labels = torch.ones(batch_size, 1) real_tensor = torch.FloatTensor(real_data) real_pred = self.discriminator(real_tensor) real_loss = nn.BCELoss()(real_pred, real_labels) # 生成数据 fake_data = [] for noise in noise_batch: fake_sample = self.generator.generate(noise, self.g_params) fake_data.append(fake_sample) fake_labels = torch.zeros(batch_size, 1) fake_tensor = torch.FloatTensor(fake_data) fake_pred = self.discriminator(fake_tensor) fake_loss = nn.BCELoss()(fake_pred, fake_labels) # 总损失 d_loss = real_loss + fake_loss d_loss.backward() self.d_optimizer.step() # ===== 训练生成器(量子参数) ===== # 计算生成器损失的梯度 g_gradients = np.zeros_like(self.g_params) for i in range(len(self.g_params)): # 参数偏移 shift = np.pi / 2 # 正向 params_plus = self.g_params.copy() params_plus[i] += shift fake_plus = [self.generator.generate(noise, params_plus) for noise in noise_batch[:5]] # 采样减少计算量 pred_plus = self.discriminator(torch.FloatTensor(fake_plus)) loss_plus = -torch.log(pred_plus + 1e-8).mean() # 负向 params_minus = self.g_params.copy() params_minus[i] -= shift fake_minus = [self.generator.generate(noise, params_minus) for noise in noise_batch[:5]] pred_minus = self.discriminator(torch.FloatTensor(fake_minus)) loss_minus = -torch.log(pred_minus + 1e-8).mean() # 梯度 g_gradients[i] = (loss_plus.item() - loss_minus.item()) / 2 # 更新生成器参数 self.g_params -= self.lr_g * g_gradients # 计算生成器损失(用于监控) fake_current = [self.generator.generate(noise, self.g_params) for noise in noise_batch[:10]] g_pred = self.discriminator(torch.FloatTensor(fake_current)) g_loss = -torch.log(g_pred + 1e-8).mean() return d_loss.item(), g_loss.item() def train(self, real_data_loader, epochs=100, noise_dim=4): """完整训练循环""" history = {'d_loss': [], 'g_loss': []} for epoch in range(epochs): epoch_d_loss = 0 epoch_g_loss = 0 num_batches = 0 for real_batch in real_data_loader: # 生成噪声 noise_batch = np.random.uniform(-1, 1, (len(real_batch), noise_dim)) # 训练 d_loss, g_loss = self.train_step(real_batch, noise_batch) epoch_d_loss += d_loss epoch_g_loss += g_loss num_batches += 1 avg_d_loss = epoch_d_loss / num_batches avg_g_loss = epoch_g_loss / num_batches history['d_loss'].append(avg_d_loss) history['g_loss'].append(avg_g_loss) if epoch % 10 == 0: print(f"Epoch {epoch}: D_loss={avg_d_loss:.4f}, G_loss={avg_g_loss:.4f}") return history========== 实验:生成高斯分布 ==========
print("=== 量子GAN训练实验 ===\n")
生成真实数据(目标:4维高斯分布)
np.random.seed(42)
real_data = []
for _ in range(100):
# 归一化的概率分布
gaussian = np.random.normal(0, 1, 16)
gaussian = np.abs(gaussian)
gaussian = gaussian / np.sum(gaussian)
real_data.append(gaussian)简单数据加载器
class SimpleDataLoader:
def init(self, data, batch_size=10):
self.data = data
self.batch_size = batch_sizedef __iter__(self): indices = np.random.permutation(len(self.data)) for i in range(0, len(self.data), self.batch_size): batch_indices = indices[i:i+self.batch_size] yield [self.data[j] for j in batch_indices]data_loader = SimpleDataLoader(real_data, batch_size=10)
创建并训练QGAN
qgan = QGAN(n_qubits=4, n_layers=2, lr_g=0.05, lr_d=0.001)
history = qgan.train(data_loader, epochs=50, noise_dim=4)可视化训练过程
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
损失曲线
axes[0].plot(history['d_loss'], label='判别器损失', linewidth=2, color='blue')
axes[0].plot(history['g_loss'], label='生成器损失', linewidth=2, color='red')
axes[0].set_xlabel('Epoch')
axes[0].set_ylabel('损失')
axes[0].set_title('QGAN训练损失')
axes[0].legend()
axes[0].grid(True, alpha=0.3)真实数据分布
real_mean = np.mean(real_data, axis=0)
axes[1].bar(range(len(real_mean)), real_mean, color='green', alpha=0.7)
axes[1].set_xlabel('状态索引')
axes[1].set_ylabel('概率')
axes[1].set_title('真实数据分布(平均)')
axes[1].grid(True, alpha=0.3, axis='y')生成数据分布
noise_samples = np.random.uniform(-1, 1, (50, 4))
generated = [qgan.generator.generate(noise, qgan.g_params) for noise in noise_samples]
generated_mean = np.mean(generated, axis=0)
axes[2].bar(range(len(generated_mean)), generated_mean, color='purple', alpha=0.7)
axes[2].set_xlabel('状态索引')
axes[2].set_ylabel('概率')
axes[2].set_title('生成数据分布(平均)')
axes[2].grid(True, alpha=0.3, axis='y')plt.tight_layout()
plt.show()KL散度评估
from scipy.stats import entropy
kl_divergence = entropy(real_mean + 1e-10, generated_mean + 1e-10)
print(f"\n真实分布 vs 生成分布 KL散度:{kl_divergence:.4f}")
print(f"分布相似度(越小越好):{'优秀' if kl_divergence < 0.1 else '良好' if kl_divergence < 0.5 else '需改进'}")
6.2 量子变分自编码器(QVAE)
架构设计:
-
编码器:经典数据 → 量子潜在态
-
解码器:量子态 → 重构数据
class QuantumVariationalAutoencoder:
"""量子变分自编码器"""def __init__(self, input_dim, n_latent_qubits, n_layers=2): self.input_dim = input_dim self.n_qubits = n_latent_qubits # 经典编码器 self.encoder = nn.Sequential( nn.Linear(input_dim, 32), nn.ReLU(), nn.Linear(32, n_latent_qubits * 2) # 均值和方差 ) # 量子潜在空间 self.quantum_latent = TwoLocal( n_latent_qubits, rotation_blocks=['ry', 'rz'], entanglement_blocks='cx', reps=n_layers ) # 经典解码器 self.decoder = nn.Sequential( nn.Linear(2**n_latent_qubits, 32), nn.ReLU(), nn.Linear(32, input_dim), nn.Sigmoid() ) def encode(self, x): """编码为潜在分布参数""" h = self.encoder(x) mu, log_var = torch.chunk(h, 2, dim=-1) return mu, log_var def reparameterize(self, mu, log_var): """重参数化技巧""" std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return mu + eps * std def quantum_encode(self, z): """量子潜在空间编码""" # 将经典潜在向量编码到量子态 qc = QuantumCircuit(self.n_qubits) for i, zi in enumerate(z): qc.ry(zi.item() * np.pi, i) # 应用量子层 params = np.random.uniform(0, 2*np.pi, self.quantum_latent.num_parameters) qc.compose(self.quantum_latent.bind_parameters(params), inplace=True) # 获取量子态向量 from qiskit.quantum_info import Statevector state = Statevector(qc) return torch.FloatTensor(np.abs(state.data)**2) def decode(self, quantum_state): """解码为重构数据""" return self.decoder(quantum_state.unsqueeze(0)) def forward(self, x): """完整前向传播""" mu, log_var = self.encode(x) z = self.reparameterize(mu, log_var) # 量子编码 quantum_state = self.quantum_encode(z[0]) # 解码 x_recon = self.decode(quantum_state) return x_recon, mu, log_var def loss_function(self, x_recon, x, mu, log_var): """ELBO损失""" # 重构损失 recon_loss = nn.MSELoss()(x_recon, x) # KL散度 kl_div = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) return recon_loss + 0.01 * kl_div示例:图像压缩
print("\n=== 量子VAE实验 ===")
生成简单图像数据(8x8像素)
from sklearn.datasets import load_digits
digits = load_digits()
X = digits.data[:100] / 16.0 # 归一化创建QVAE
qvae = QuantumVariationalAutoencoder(input_dim=64, n_latent_qubits=3, n_layers=2)
optimizer = torch.optim.Adam(qvae.parameters(), lr=0.001)训练
X_tensor = torch.FloatTensor(X)
losses = []for epoch in range(100):
total_loss = 0
for i in range(len(X_tensor)):
x = X_tensor[i:i+1]optimizer.zero_grad() x_recon, mu, log_var = qvae(x) loss = qvae.loss_function(x_recon, x, mu, log_var) loss.backward() optimizer.step() total_loss += loss.item() avg_loss = total_loss / len(X_tensor) losses.append(avg_loss) if epoch % 20 == 0: print(f"Epoch {epoch}: 损失 = {avg_loss:.4f}")可视化重构
fig, axes = plt.subplots(2, 5, figsize=(15, 6))
for i in range(5):
# 原始图像
axes[0, i].imshow(X[i].reshape(8, 8), cmap='gray')
axes[0, i].set_title(f'原始 {i}')
axes[0, i].axis('off')# 重构图像 with torch.no_grad(): x_recon, _, _ = qvae(X_tensor[i:i+1]) axes[1, i].imshow(x_recon[0].numpy().reshape(8, 8), cmap='gray') axes[1, i].set_title(f'重构 {i}') axes[1, i].axis('off')plt.suptitle('量子VAE图像重构', fontsize=16)
plt.tight_layout()
plt.show()print(f"\n潜在空间维度:{2**qvae.n_qubits}(量子态)")
print(f"压缩比:{64 / qvae.n_qubits:.1f}x(经典比特)")
🎯 第七章:实战案例 - 量子支持向量机
7.1 量子核SVM理论
核技巧回顾:
经典核函数:k(x, x') = φ(x)·φ(x')
量子核函数:K(x, x') = |⟨φ(x')|φ(x)⟩|²
量子特征映射:
|φ(x)⟩ = U_φ(x)|0⟩^⊗n
7.2 完整分类流程
from sklearn.datasets import make_moons, make_circles
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from qiskit_machine_learning.kernels import FidelityQuantumKernel
from qiskit.circuit.library import ZZFeatureMap, PauliFeatureMap
from sklearn.svm import SVC
class QuantumSVMClassifier:
"""完整的量子SVM分类器"""
def __init__(self, feature_map_type='zz', n_qubits=2, reps=2):
# 选择特征映射
if feature_map_type == 'zz':
self.feature_map = ZZFeatureMap(
feature_dimension=n_qubits,
reps=reps,
entanglement='linear'
)
elif feature_map_type == 'pauli':
self.feature_map = PauliFeatureMap(
feature_dimension=n_qubits,
reps=reps,
paulis=['Z', 'ZZ', 'ZZZ']
)
# 构建量子核
self.quantum_kernel = FidelityQuantumKernel(feature_map=self.feature_map)
# SVM分类器
self.svm = None
def fit(self, X_train, y_train):
"""训练模型"""
print("计算训练集量子核矩阵...")
kernel_matrix_train = self.quantum_kernel.evaluate(X_train)
print("训练SVM...")
self.svm = SVC(kernel='precomputed', C=1.0)
self.svm.fit(kernel_matrix_train, y_train)
self.X_train = X_train
def predict(self, X_test):
"""预测"""
print("计算测试集量子核矩阵...")
kernel_matrix_test = self.quantum_kernel.evaluate(X_test, self.X_train)
return self.svm.predict(kernel_matrix_test)
def score(self, X_test, y_test):
"""评估准确率"""
y_pred = self.predict(X_test)
return accuracy_score(y_test, y_pred)
def visualize_decision_boundary(self, X, y, resolution=0.02):
"""可视化决策边界"""
# 创建网格
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
xx, yy = np.meshgrid(
np.arange(x_min, x_max, resolution),
np.arange(y_min, y_max, resolution)
)
# 预测网格点(采样以减少计算)
grid_points = np.c_[xx.ravel(), yy.ravel()]
sample_indices = np.random.choice(
len(grid_points),
size=min(500, len(grid_points)),
replace=False
)
Z = np.zeros(len(grid_points))
Z[sample_indices] = self.predict(grid_points[sample_indices])
Z = Z.reshape(xx.shape)
# 绘图
plt.figure(figsize=(10, 8))
plt.contourf(xx, yy, Z, alpha=0.3, cmap='RdYlBu')
# 绘制数据点
scatter = plt.scatter(
X[:, 0], X[:, 1],
c=y,
cmap='RdYlBu',
edgecolors='black',
s=100,
alpha=0.8
)
plt.xlabel('特征 1', fontsize=12)
plt.ylabel('特征 2', fontsize=12)
plt.title('量子SVM决策边界', fontsize=14)
plt.colorbar(scatter, label='类别')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# ========== 实验1:月牙数据集 ==========
print("=== 实验1:月牙数据集分类 ===\n")
X_moons, y_moons = make_moons(n_samples=100, noise=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(
X_moons, y_moons, test_size=0.3, random_state=42
)
# 量子SVM
qsvm = QuantumSVMClassifier(feature_map_type='zz', n_qubits=2, reps=2)
qsvm.fit(X_train, y_train)
qsvm_acc = qsvm.score(X_test, y_test)
print(f"\n量子SVM测试准确率:{qsvm_acc * 100:.2f}%")
# 经典SVM对比
classical_svm = SVC(kernel='rbf', C=1.0)
classical_svm.fit(X_train, y_train)
classical_acc = classical_svm.score(X_test, y_test)
print(f"经典RBF核SVM准确率:{classical_acc * 100:.2f}%")
# 可视化
qsvm.visualize_decision_boundary(X_moons, y_moons)
# ========== 实验2:圆环数据集 ==========
print("\n=== 实验2:圆环数据集分类 ===\n")
X_circles, y_circles = make_circles(n_samples=100, noise=0.1, factor=0.5, random_state=42)
X_train_c, X_test_c, y_train_c, y_test_c = train_test_split(
X_circles, y_circles, test_size=0.3, random_state=42
)
# 量子SVM
qsvm_circles = QuantumSVMClassifier(feature_map_type='pauli', n_qubits=2, reps=3)
qsvm_circles.fit(X_train_c, y_train_c)
y_pred_q = qsvm_circles.predict(X_test_c)
print("\n量子SVM分类报告:")
print(classification_report(y_test_c, y_pred_q))
# 经典对比
classical_svm_c = SVC(kernel='rbf', C=1.0)
classical_svm_c.fit(X_train_c, y_train_c)
y_pred_c = classical_svm_c.predict(X_test_c)
print("经典SVM分类报告:")
print(classification_report(y_test_c, y_pred_c))
qsvm_circles.visualize_decision_boundary(X_circles, y_circles)
7.3 量子核矩阵分析
def analyze_quantum_kernel(X, feature_map, title="量子核矩阵分析"):
"""深入分析量子核性质"""
kernel = FidelityQuantumKernel(feature_map=feature_map)
K = kernel.evaluate(X)
fig, axes = plt.subplots(2, 2, figsize=(14, 12))
# 1. 核矩阵热图
im1 = axes[0, 0].imshow(K, cmap='viridis', aspect='auto')
axes[0, 0].set_title('量子核矩阵', fontsize=12)
axes[0, 0].set_xlabel('样本索引')
axes[0, 0].set_ylabel('样本索引')
plt.colorbar(im1, ax=axes[0, 0], label='核函数值')
# 2. 特征值分布
eigenvalues = np.linalg.eigvalsh(K)
eigenvalues = np.sort(eigenvalues)[::-1]
axes[0, 1].plot(eigenvalues, marker='o', linestyle='-', linewidth=2)
axes[0, 1].set_xlabel('特征值索引', fontsize=12)
axes[0, 1].set_ylabel('特征值', fontsize=12)
axes[0, 1].set_title('核矩阵特征值分布', fontsize=12)
axes[0, 1].set_yscale('log')
axes[0, 1].grid(True, alpha=0.3)
# 3. 核对齐(Kernel Alignment)
def kernel_alignment(K1, K2):
return np.sum(K1 * K2) / np.sqrt(np.sum(K1 * K1) * np.sum(K2 * K2))
# 与线性核对比
K_linear = X @ X.T
alignment_linear = kernel_alignment(K, K_linear)
# 与RBF核对比
from sklearn.metrics.pairwise import rbf_kernel
K_rbf = rbf_kernel(X)
alignment_rbf = kernel_alignment(K, K_rbf)
alignments = [alignment_linear, alignment_rbf]
labels = ['线性核', 'RBF核']
axes[1, 0].bar(labels, alignments, color=['skyblue', 'orange'], alpha=0.7)
axes[1, 0].set_ylabel('核对齐度', fontsize=12)
axes[1, 0].set_title('量子核与经典核的对齐度', fontsize=12)
axes[1, 0].set_ylim([0, 1])
axes[1, 0].grid(True, alpha=0.3, axis='y')
# 4. 核有效秩
effective_rank = np.sum(eigenvalues)**2 / np.sum(eigenvalues**2)
axes[1, 1].text(0.5, 0.6, f'核矩阵性质:\n\n'
f'维度:{K.shape[0]} × {K.shape[1]}\n'
f'条件数:{np.max(eigenvalues) / np.min(eigenvalues):.2e}\n'
f'有效秩:{effective_rank:.2f}\n'
f'迹:{np.trace(K):.2f}\n\n'
f'与线性核对齐度:{alignment_linear:.4f}\n'
f'与RBF核对齐度:{alignment_rbf:.4f}',
horizontalalignment='center',
verticalalignment='center',
fontsize=11,
bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
axes[1, 1].axis('off')
plt.suptitle(title, fontsize=16, y=0.98)
plt.tight_layout()
plt.show()
return K, eigenvalues
# 分析不同特征映射
print("\n=== 量子核矩阵深度分析 ===\n")
# ZZ特征映射
feature_map_zz = ZZFeatureMap(2, reps=2)
K_zz, eig_zz = analyze_quantum_kernel(
X_moons[:30],
feature_map_zz,
title="ZZ特征映射量子核分析"
)
# Pauli特征映射
feature_map_pauli = PauliFeatureMap(2, reps=2, paulis=['Z', 'ZZ'])
K_pauli, eig_pauli = analyze_quantum_kernel(
X_moons[:30],
feature_map_pauli,
title="Pauli特征映射量子核分析"
)
📝 第八章:量子自然语言处理 - 语言理解的新维度
8.1 量子词嵌入(Quantum Word Embeddings)
核心思想:将词语映射到量子希尔伯特空间
from qiskit import QuantumCircuit
from scipy.spatial.distance import cosine
class QuantumWordEmbedding:
"""量子词嵌入"""
def __init__(self, vocab_size, n_qubits=4, embedding_dim=16):
self.vocab_size = vocab_size
self.n_qubits = n_qubits
self.embedding_dim = embedding_dim # 2^n_qubits
# 为每个词学习量子电路参数
self.word_circuits = {}
def create_word_circuit(self, word_id):
"""为单词创建量子电路"""
qc = QuantumCircuit(self.n_qubits)
# 基于词ID的确定性初始化
np.random.seed(word_id)
params = np.random.uniform(0, 2*np.pi, self.n_qubits * 3)
param_idx = 0
for i in range(self.n_qubits):
qc.ry(params[param_idx], i)
param_idx += 1
qc.rz(params[param_idx], i)
param_idx += 1
# 纠缠层
for i in range(self.n_qubits - 1):
qc.cx(i, i+1)
qc.ry(params[param_idx], i+1)
param_idx += 1
return qc
def get_embedding(self, word_id):
"""获取词的量子态向量"""
if word_id not in self.word_circuits:
self.word_circuits[word_id] = self.create_word_circuit(word_id)
qc = self.word_circuits[word_id]
from qiskit.quantum_info import Statevector
state = Statevector(qc)
return state.data
def similarity(self, word_id1, word_id2):
"""计算量子相似度(内积的模方)"""
emb1 = self.get_embedding(word_id1)
emb2 = self.get_embedding(word_id2)
# 量子态内积
fidelity = np.abs(np.vdot(emb1, emb2))**2
return fidelity
def find_similar_words(self, word_id, top_k=5):
"""找到最相似的词"""
similarities = []
for other_id in range(self.vocab_size):
if other_id != word_id:
sim = self.similarity(word_id, other_id)
similarities.append((other_id, sim))
# 排序
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_k]
# 示例:小词汇表
vocab = {
'king': 0, 'queen': 1, 'man': 2, 'woman': 3,
'prince': 4, 'princess': 5, 'boy': 6, 'girl': 7,
'cat': 8, 'dog': 9, 'car': 10, 'bike': 11
}
print("=== 量子词嵌入实验 ===\n")
qwe = QuantumWordEmbedding(vocab_size=len(vocab), n_qubits=4)
# 计算词语相似度
word_pairs = [
('king', 'queen'),
('man', 'woman'),
('prince', 'princess'),
('cat', 'dog'),
('king', 'man'),
('cat', 'car')
]
print("词语相似度(量子内积):")
for w1, w2 in word_pairs:
sim = qwe.similarity(vocab[w1], vocab[w2])
print(f" {w1:10s} ↔ {w2:10s}: {sim:.4f}")
# 找到相似词
print(f"\n与'king'最相似的词:")
similar = qwe.find_similar_words(vocab['king'], top_k=3)
inv_vocab = {v: k for k, v in vocab.items()}
for word_id, sim in similar:
print(f" {inv_vocab[word_id]:10s}: {sim:.4f}")
# 可视化词嵌入(降维到2D)
from sklearn.decomposition import PCA
embeddings_matrix = []
word_labels = []
for word, idx in sorted(vocab.items(), key=lambda x: x[1]):
emb = qwe.get_embedding(idx)
# 取实部作为特征
embeddings_matrix.append(np.real(emb))
word_labels.append(word)
embeddings_matrix = np.array(embeddings_matrix)
# PCA降维
pca = PCA(n_components=2)
embeddings_2d = pca.fit_transform(embeddings_matrix)
plt.figure(figsize=(10, 8))
plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], s=200, alpha=0.6, c=range(len(vocab)), cmap='tab20')
for i, word in enumerate(word_labels):
plt.annotate(word, (embeddings_2d[i, 0], embeddings_2d[i, 1]),
fontsize=12, fontweight='bold')
plt.xlabel('主成分 1', fontsize=12)
plt.ylabel('主成分 2', fontsize=12)
plt.title('量子词嵌入可视化(PCA降维)', fontsize=14)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
print(f"\nPCA解释方差比:{pca.explained_variance_ratio_}")
8.2 量子文本分类
class QuantumTextClassifier:
"""量子文本分类器"""
def __init__(self, n_qubits=4, n_classes=2):
self.n_qubits = n_qubits
self.n_classes = n_classes
# 量子特征提取电路
self.feature_circuit = TwoLocal(
n_qubits,
rotation_blocks=['ry', 'rz'],
entanglement_blocks='cx',
entanglement='circular',
reps=2
)
# 分类头(经典)
self.classifier = nn.Sequential(
nn.Linear(2**n_qubits, 16),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(16, n_classes)
)
def encode_text(self, text_vector):
"""将文本向量编码到量子态"""
# 角度编码
qc = QuantumCircuit(self.n_qubits)
for i in range(min(len(text_vector), self.n_qubits)):
qc.ry(text_vector[i] * np.pi, i)
# 应用特征提取
params = np.random.uniform(0, 2*np.pi, self.feature_circuit.num_parameters)
qc.compose(self.feature_circuit.bind_parameters(params), inplace=True)
# 获取量子态
from qiskit.quantum_info import Statevector
state = Statevector(qc)
return torch.FloatTensor(np.abs(state.data)**2)
def forward(self, text_vectors):
"""前向传播"""
quantum_features = []
for text_vec in text_vectors:
qf = self.encode_text(text_vec)
quantum_features.append(qf)
quantum_features = torch.stack(quantum_features)
logits = self.classifier(quantum_features)
return logits
def train_model(self, X_train, y_train, epochs=50, lr=0.001):
"""训练模型"""
optimizer = torch.optim.Adam(self.classifier.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
history = []
for epoch in range(epochs):
optimizer.zero_grad()
logits = self.forward(X_train)
loss = criterion(logits, torch.LongTensor(y_train))
loss.backward()
optimizer.step()
history.append(loss.item())
if epoch % 10 == 0:
# 计算准确率
with torch.no_grad():
preds = torch.argmax(logits, dim=1).numpy()
acc = np.mean(preds == y_train)
print(f"Epoch {epoch}: Loss={loss.item():.4f}, Acc={acc*100:.2f}%")
return history
# 示例:情感分类
print("\n=== 量子文本分类实验 ===\n")
# 模拟文本数据(TF-IDF特征)
np.random.seed(42)
# 正面情感文本
positive_texts = np.random.randn(30, 4) + np.array([1, 0.5, -0.5, 0.3])
# 负面情感文本
negative_texts = np.random.randn(30, 4) + np.array([-0.8, -0.6, 0.7, -0.4])
X = np.vstack([positive_texts, negative_texts])
y = np.array([1]*30 + [0]*30)
# 打乱数据
indices = np.random.permutation(len(X))
X = X[indices]
y = y[indices]
# 训练量子分类器
qtc = QuantumTextClassifier(n_qubits=4, n_classes=2)
history = qtc.train_model(X, y, epochs=100, lr=0.01)
# 可视化训练
plt.figure(figsize=(10, 6))
plt.plot(history, linewidth=2, color='purple')
plt.xlabel('Epoch')
plt.ylabel('交叉熵损失')
plt.title('量子文本分类器训练曲线')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 最终评估
with torch.no_grad():
final_logits = qtc.forward(X)
final_preds = torch.argmax(final_logits, dim=1).numpy()
final_acc = np.mean(final_preds == y)
print(f"\n最终准确率:{final_acc*100:.2f}%")
print("\n混淆矩阵:")
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y, final_preds)
print(cm)
8.3 量子注意力翻译模型
class QuantumAttentionTranslator:
"""量子注意力机器翻译模型"""
def __init__(self, source_vocab_size, target_vocab_size, n_qubits=4):
self.source_vocab = source_vocab_size
self.target_vocab = target_vocab_size
self.n_qubits = n_qubits
# 量子注意力机制
self.attention_circuit = QuantumCircuit(n_qubits)
def quantum_attention(self, query, key):
"""量子注意力计算"""
# 编码Query
qc_q = QuantumCircuit(self.n_qubits)
for i, q in enumerate(query[:self.n_qubits]):
qc_q.ry(q * np.pi, i)
# 编码Key
qc_k = QuantumCircuit(self.n_qubits)
for i, k in enumerate(key[:self.n_qubits]):
qc_k.ry(k * np.pi, i)
# 计算量子态内积(注意力分数)
from qiskit.quantum_info import Statevector
state_q = Statevector(qc_q)
state_k = Statevector(qc_k)
attention_score = np.abs(np.vdot(state_q.data, state_k.data))**2
return attention_score
def translate(self, source_sentence):
"""翻译句子(演示版)"""
# 简化:每个词用随机向量表示
source_embeddings = [np.random.randn(self.n_qubits) for _ in source_sentence]
# 计算自注意力
attention_matrix = np.zeros((len(source_sentence), len(source_sentence)))
for i, query in enumerate(source_embeddings):
for j, key in enumerate(source_embeddings):
attention_matrix[i, j] = self.quantum_attention(query, key)
# 归一化
attention_matrix = attention_matrix / attention_matrix.sum(axis=1, keepdims=True)
return attention_matrix
# 示例
qat = QuantumAttentionTranslator(source_vocab_size=1000, target_vocab_size=1000, n_qubits=3)
sentence = "This is a test".split()
attention_matrix = qat.translate(sentence)
print("\n量子注意力矩阵:")
print(attention_matrix)
plt.figure(figsize=(8, 6))
plt.imshow(attention_matrix, cmap='viridis', aspect='auto')
plt.colorbar(label='注意力权重')
plt.xticks(range(len(sentence)), sentence)
plt.yticks(range(len(sentence)), sentence)
plt.xlabel('Key(源词)')
plt.ylabel('Query(目标词)')
plt.title('量子自注意力热图')
plt.tight_layout()
plt.show()
🛡️ 第九章:技术挑战 - 噪声、退相干与纠错
9.1 量子噪声模型
from qiskit_aer.noise import NoiseModel, depolarizing_error, thermal_relaxation_error
class QuantumNoiseSimulator:
"""量子噪声模拟器"""
def __init__(self):
self.noise_model = NoiseModel()
def add_gate_errors(self, single_qubit_error=0.001, two_qubit_error=0.01):
"""添加门操作错误"""
# 单量子比特门去极化噪声
error_1q = depolarizing_error(single_qubit_error, 1)
# 双量子比特门去极化噪声
error_2q = depolarizing_error(two_qubit_error, 2)
# 应用到所有门
self.noise_model.add_all_qubit_quantum_error(error_1q, ['u1', 'u2', 'u3'])
self.noise_model.add_all_qubit_quantum_error(error_2q, ['cx'])
def add_thermal_relaxation(self, t1=50e3, t2=70e3, gate_time=50):
"""添加热弛豫噪声"""
# T1:能量弛豫时间
# T2:相位弛豫时间
error_thermal = thermal_relaxation_error(t1, t2, gate_time)
self.noise_model.add_all_qubit_quantum_error(
error_thermal,
['u1', 'u2', 'u3']
)
def simulate_noisy_circuit(self, circuit, shots=1024):
"""模拟噪声电路"""
from qiskit_aer import AerSimulator
from qiskit import transpile
simulator = AerSimulator(noise_model=self.noise_model)
compiled = transpile(circuit, simulator)
job = simulator.run(compiled, shots=shots)
return job.result()
# 实验:噪声对VQE的影响
print("=== 量子噪声影响实验 ===\n")
# 创建简单VQE电路
vqe_circuit = QuantumCircuit(2)
vqe_circuit.ry(np.pi/4, 0)
vqe_circuit.ry(np.pi/3, 1)
vqe_circuit.cx(0, 1)
vqe_circuit.measure_all()
# 无噪声模拟
from qiskit_aer import AerSimulator
from qiskit import transpile
ideal_simulator = AerSimulator()
ideal_compiled = transpile(vqe_circuit, ideal_simulator)
ideal_result = ideal_simulator.run(ideal_compiled, shots=1024).result()
ideal_counts = ideal_result.get_counts()
print("理想情况(无噪声):")
print(ideal_counts)
# 有噪声模拟
noise_sim = QuantumNoiseSimulator()
noise_sim.add_gate_errors(single_qubit_error=0.005, two_qubit_error=0.02)
noise_sim.add_thermal_relaxation(t1=50e3, t2=70e3, gate_time=50)
noisy_result = noise_sim.simulate_noisy_circuit(vqe_circuit, shots=1024)
noisy_counts = noisy_result.get_counts()
print("\n噪声情况:")
print(noisy_counts)
# 可视化对比
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
states_ideal = list(ideal_counts.keys())
probs_ideal = [ideal_counts[s]/1024 for s in states_ideal]
ax1.bar(states_ideal, probs_ideal, color='green', alpha=0.7)
ax1.set_xlabel('量子态')
ax1.set_ylabel('概率')
ax1.set_title('理想情况(无噪声)')
ax1.set_ylim([0, 1])
ax1.grid(True, alpha=0.3, axis='y')
states_noisy = list(noisy_counts.keys())
probs_noisy = [noisy_counts[s]/1024 for s in states_noisy]
ax2.bar(states_noisy, probs_noisy, color='red', alpha=0.7)
ax2.set_xlabel('量子态')
ax2.set_ylabel('概率')
ax2.set_title('噪声情况')
ax2.set_ylim([0, 1])
ax2.grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()
# 计算保真度
from qiskit.quantum_info import hellinger_fidelity
# 转换为概率分布(确保相同的键)
all_states = set(list(ideal_counts.keys()) + list(noisy_counts.keys()))
ideal_dist = {s: ideal_counts.get(s, 0)/1024 for s in all_states}
noisy_dist = {s: noisy_counts.get(s, 0)/1024 for s in all_states}
fidelity = 1 - np.sqrt(1 - sum(np.sqrt(ideal_dist[s] * noisy_dist[s]) for s in all_states)**2)
print(f"\n噪声导致的保真度下降:{(1-fidelity)*100:.2f}%")
9.2 量子纠错码
表面码(Surface Code)示例:
class SurfaceCode:
"""简化的表面码实现"""
def __init__(self, distance=3):
"""
distance: 码距(决定纠错能力)
码距d可纠正 ⌊(d-1)/2⌋ 个错误
"""
self.distance = distance
self.n_data_qubits = distance * distance
self.n_ancilla_qubits = (distance - 1) * (distance + 1)
def create_logical_qubit(self, logical_state='0'):
"""创建逻辑量子比特"""
# 简化:使用多个物理量子比特编码一个逻辑比特
n_physical = self.n_data_qubits + self.n_ancilla_qubits
qc = QuantumCircuit(n_physical)
if logical_state == '0':
# 逻辑|0⟩:所有数据量子比特为|0⟩
pass # 默认初始化
elif logical_state == '1':
# 逻辑|1⟩:在所有数据量子比特上应用X
for i in range(self.n_data_qubits):
qc.x(i)
return qc
def syndrome_measurement(self):
"""校验子测量"""
n_total = self.n_data_qubits + self.n_ancilla_qubits
qc = QuantumCircuit(n_total, self.n_ancilla_qubits)
# X型校验(检测Z错误)
# Z型校验(检测X错误)
# 这里简化处理
ancilla_start = self.n_data_qubits
for i in range(self.distance - 1):
for j in range(self.distance):
# X型稳定子
ancilla_idx = ancilla_start + i * self.distance + j
# 与周围数据量子比特纠缠
data_qubits = [
i * self.distance + j,
(i + 1) * self.distance + j
]
qc.h(ancilla_idx)
for dq in data_qubits:
if dq < self.n_data_qubits:
qc.cx(ancilla_idx, dq)
qc.h(ancilla_idx)
# 测量辅助比特
qc.measure(ancilla_idx, i * self.distance + j)
return qc
def decode_syndrome(self, syndrome):
"""解码校验子(检测错误位置)"""
# 简化:使用查找表
# 实际实现需要复杂的解码算法(如最小权重完美匹配)
errors_detected = np.sum(syndrome)
return errors_detected > 0
# 演示
print("\n=== 表面码纠错演示 ===\n")
sc = SurfaceCode(distance=3)
print(f"码距:{sc.distance}")
print(f"数据量子比特:{sc.n_data_qubits}")
print(f"辅助量子比特:{sc.n_ancilla_qubits}")
print(f"总量子比特:{sc.n_data_qubits + sc.n_ancilla_qubits}")
print(f"纠错能力:可纠正 {(sc.distance-1)//2} 个错误")
# 创建逻辑量子比特
logical_circuit = sc.create_logical_qubit('0')
print(f"\n逻辑|0⟩电路深度:{logical_circuit.depth()}")
# 校验子测量
syndrome_circuit = sc.syndrome_measurement()
print(f"校验子测量电路深度:{syndrome_circuit.depth()}")
9.3 错误缓解技术
零噪声外推(Zero-Noise Extrapolation):
class ErrorMitigation:
"""量子错误缓解"""
def __init__(self):
pass
def zero_noise_extrapolation(self, circuit, noise_factors=[1, 2, 3]):
"""零噪声外推"""
from qiskit_aer import AerSimulator
from qiskit import transpile
from scipy.optimize import curve_fit
expectation_values = []
for factor in noise_factors:
# 放大噪声(通过重复门操作)
scaled_circuit = self.scale_noise(circuit, factor)
# 模拟
simulator = AerSimulator()
compiled = transpile(scaled_circuit, simulator)
job = simulator.run(compiled, shots=1024)
result = job.result()
counts = result.get_counts()
# 计算期望值(这里简化为测量|00⟩的概率)
expectation = counts.get('00', 0) / 1024
expectation_values.append(expectation)
# 外推到零噪声
def exponential_model(x, a, b):
return a * np.exp(-b * x)
# 拟合
popt, _ = curve_fit(exponential_model, noise_factors, expectation_values)
# 外推到零噪声(factor=0)
zero_noise_expectation = exponential_model(0, *popt)
return zero_noise_expectation, expectation_values, popt
def scale_noise(self, circuit, factor):
"""放大噪声(门操作重复)"""
scaled_qc = QuantumCircuit(circuit.num_qubits)
for instruction in circuit.data:
# 重复门操作 factor 次
for _ in range(int(factor)):
scaled_qc.append(instruction)
scaled_qc.measure_all()
return scaled_qc
# 演示
em = ErrorMitigation()
test_circuit = QuantumCircuit(2)
test_circuit.h(0)
test_circuit.cx(0, 1)
print("\n=== 零噪声外推演示 ===\n")
mitigated_value, noisy_values, params = em.zero_noise_extrapolation(
test_circuit,
noise_factors=[1, 1.5, 2, 2.5, 3]
)
print(f"噪声期望值:{noisy_values}")
print(f"外推参数:a={params[0]:.4f}, b={params[1]:.4f}")
print(f"零噪声外推值:{mitigated_value:.4f}")
print(f"理论值(理想):0.5000")
# 可视化
noise_factors_fine = np.linspace(0, 3, 100)
fitted_curve = params[0] * np.exp(-params[1] * noise_factors_fine)
plt.figure(figsize=(10, 6))
plt.scatter([1, 1.5, 2, 2.5, 3], noisy_values, s=100, c='red', label='噪声测量', zorder=3)
plt.plot(noise_factors_fine, fitted_curve, 'b-', linewidth=2, label='拟合曲线')
plt.scatter(0, mitigated_value, s=200, c='green', marker='*', label='外推零噪声值', zorder=3)
plt.axhline(y=0.5, color='gray', linestyle='--', label='理论理想值')
plt.xlabel('噪声放大因子', fontsize=12)
plt.ylabel('期望值', fontsize=12)
plt.title('零噪声外推方法', fontsize=14)
plt.legend(fontsize=11)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
🏭 第十章:产业应用 - 从理论到商业化
10.1 量子金融:投资组合优化
import yfinance as yf
from datetime import datetime, timedelta
class QuantumPortfolioOptimizer:
"""量子投资组合优化器"""
def __init__(self, tickers, start_date, end_date):
self.tickers = tickers
self.start_date = start_date
self.end_date = end_date
# 下载数据
self.data = self.fetch_data()
def fetch_data(self):
"""获取股票数据"""
data = yf.download(self.tickers, start=self.start_date, end=self.end_date)['Adj Close']
return data
def calculate_returns(self):
"""计算收益率"""
returns = self.data.pct_change().dropna()
return returns
def optimize_qaoa(self, risk_aversion=0.5, budget=10):
"""使用QAOA优化"""
returns = self.calculate_returns()
# 期望收益
expected_returns = returns.mean().values
# 协方差矩阵
cov_matrix = returns.cov().values
# 构造QUBO问题
n = len(self.tickers)
Q = {}
# 收益项(最大化)
for i in range(n):
Q[(i, i)] = -expected_returns[i] * 252 # 年化
# 风险项(最小化方差)
for i in range(n):
for j in range(n):
if (i, j) not in Q:
Q[(i, j)] = 0
Q[(i, j)] += risk_aversion * cov_matrix[i, j] * 252 # 年化
# 预算约束(简化:选择固定数量资产)
penalty = 10
for i in range(n):
Q[(i, i)] += penalty * (1 - 2 * budget / n)
for j in range(i+1, n):
if (i, j) not in Q:
Q[(i, j)] = 0
Q[(i, j)] += 2 * penalty / (n * n)
# 使用模拟退火求解
import dimod
sampler = dimod.SimulatedAnnealingSampler()
bqm = dimod.BinaryQuadraticModel.from_qubo(Q)
sampleset = sampler.sample(bqm, num_reads=1000)
# 提取最优解
best_solution = sampleset.first.sample
selected_assets = [i for i in range(n) if best_solution[i] == 1]
return selected_assets, expected_returns, cov_matrix
def evaluate_portfolio(self, selected_assets, expected_returns, cov_matrix):
"""评估投资组合"""
if not selected_assets:
return None
# 等权重分配
weights = np.zeros(len(expected_returns))
weights[selected_assets] = 1 / len(selected_assets)
# 组合收益
portfolio_return = np.dot(weights, expected_returns) * 252
# 组合风险
portfolio_variance = np.dot(weights, np.dot(cov_matrix, weights)) * 252
portfolio_std = np.sqrt(portfolio_variance)
# 夏普比率(假设无风险利率3%)
sharpe_ratio = (portfolio_return - 0.03) / portfolio_std
return {
'weights': weights,
'return': portfolio_return,
'volatility': portfolio_std,
'sharpe': sharpe_ratio
}
# 实战案例
print("=== 量子投资组合优化实战 ===\n")
# 选择科技股
tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'META', 'TSLA', 'NVDA', 'INTC']
end_date = datetime.now()
start_date = end_date - timedelta(days=365)
print(f"分析股票:{tickers}")
print(f"数据区间:{start_date.date()} 至 {end_date.date()}\n")
qpo = QuantumPortfolioOptimizer(tickers, start_date, end_date)
# 量子优化
selected, exp_returns, cov = qpo.optimize_qaoa(risk_aversion=0.5, budget=4)
print(f"量子优化选择的资产:{[tickers[i] for i in selected]}")
# 评估
performance = qpo.evaluate_portfolio(selected, exp_returns, cov)
if performance:
print(f"\n投资组合表现:")
print(f" 年化收益率:{performance['return']*100:.2f}%")
print(f" 年化波动率:{performance['volatility']*100:.2f}%")
print(f" 夏普比率:{performance['sharpe']:.2f}")
# 可视化权重
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
# 权重分布
colors = ['green' if w > 0 else 'gray' for w in performance['weights']]
ax1.bar(tickers, performance['weights'], color=colors, alpha=0.7)
ax1.set_xlabel('股票代码')
ax1.set_ylabel('权重')
ax1.set_title('量子优化投资组合权重')
ax1.grid(True, alpha=0.3, axis='y')
# 风险-收益图
individual_returns = exp_returns * 252
individual_stds = np.sqrt(np.diag(cov) * 252)
ax2.scatter(individual_stds, individual_returns, s=100, alpha=0.6, label='个股')
ax2.scatter(performance['volatility'], performance['return'],
s=300, c='red', marker='*', label='优化组合')
for i, ticker in enumerate(tickers):
ax2.annotate(ticker, (individual_stds[i], individual_returns[i]), fontsize=9)
ax2.set_xlabel('年化波动率', fontsize=12)
ax2.set_ylabel('年化收益率', fontsize=12)
ax2.set_title('风险-收益图', fontsize=14)
ax2.legend()
ax2.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
10.2 量子药物发现
class QuantumDrugDiscovery:
"""量子药物发现模拟"""
def __init__(self, n_qubits=6):
self.n_qubits = n_qubits
def simulate_molecular_ground_state(self, molecule_hamiltonian):
"""模拟分子基态能量"""
# 使用VQE
from qiskit.circuit.library import EfficientSU2
ansatz = EfficientSU2(molecule_hamiltonian.num_qubits, reps=3)
vqe = VQE(molecule_hamiltonian, ansatz)
result = vqe.optimize()
return result.fun # 基态能量
def protein_ligand_binding(self, protein_features, ligand_features):
"""蛋白质-配体结合能预测"""
# 使用量子核方法
from qiskit.circuit.library import ZZFeatureMap
feature_map = ZZFeatureMap(len(protein_features), reps=2)
kernel = FidelityQuantumKernel(feature_map=feature_map)
# 计算相似度(模拟结合亲和力)
combined_features = np.concatenate([protein_features, ligand_features])
# 简化:使用单一向量
qc = QuantumCircuit(self.n_qubits)
for i, feature in enumerate(combined_features[:self.n_qubits]):
qc.ry(feature * np.pi, i)
from qiskit.quantum_info import Statevector
state = Statevector(qc)
# 期望能量(简化)
binding_energy = -np.abs(state.data[0])**2 * 10 # 模拟值
return binding_energy
# 演示
print("\n=== 量子药物发现演示 ===\n")
qdd = QuantumDrugDiscovery(n_qubits=4)
# 模拟不同配体与靶蛋白的结合
protein_target = np.random.randn(4)
ligands = {
'候选药物A': np.random.randn(4),
'候选药物B': np.random.randn(4),
'候选药物C': np.random.randn(4),
'对照化合物': np.random.randn(4),
}
print("蛋白质-配体结合能预测:\n")
binding_energies = {}
for name, ligand in ligands.items():
energy = qdd.protein_ligand_binding(protein_target, ligand)
binding_energies[name] = energy
print(f"{name:15s}: {energy:.2f} kcal/mol")
# 可视化
plt.figure(figsize=(10, 6))
names = list(binding_energies.keys())
energies = list(binding_energies.values())
colors = ['green' if e < -5 else 'orange' if e < -3 else 'red' for e in energies]
plt.barh(names, energies, color=colors, alpha=0.7)
plt.xlabel('结合能 (kcal/mol)', fontsize=12)
plt.ylabel('化合物', fontsize=12)
plt.title('量子计算预测的蛋白质-配体结合能', fontsize=14)
plt.axvline(x=-5, color='green', linestyle='--', alpha=0.5, label='强结合阈值')
plt.legend()
plt.grid(True, alpha=0.3, axis='x')
plt.tight_layout()
plt.show()
best_ligand = min(binding_energies, key=binding_energies.get)
print(f"\n最佳候选药物:{best_ligand}(结合能 {binding_energies[best_ligand]:.2f} kcal/mol)")
10.3 量子材料设计
class QuantumMaterialsDesign:
"""量子材料设计"""
def __init__(self):
pass
def optimize_battery_material(self, elements, target_properties):
"""优化电池材料组成"""
# 元素组合优化(QAOA)
n_elements = len(elements)
# 构造目标函数:电导率、稳定性、成本
Q = {}
for i, elem in enumerate(elements):
# 成本系数(负值表示低成本更好)
cost = {'Li': -1, 'Co': -3, 'Ni': -2, 'Mn': -1, 'Al': -0.5}
Q[(i, i)] = cost.get(elem, -1)
# 性能系数(正值表示高性能更好)
performance = {'Li': 5, 'Co': 4, 'Ni': 3, 'Mn': 2, 'Al': 1}
Q[(i, i)] -= performance.get(elem, 1)
# 相互作用项(某些元素组合产生协同效应)
synergy = {
('Li', 'Co'): -2, # 负值表示有利组合
('Ni', 'Mn'): -1.5,
('Co', 'Al'): -1,
}
for i in range(n_elements):
for j in range(i+1, n_elements):
pair = (elements[i], elements[j])
if pair in synergy:
Q[(i, j)] = synergy[pair]
# 求解
import dimod
sampler = dimod.SimulatedAnnealingSampler()
bqm = dimod.BinaryQuadraticModel.from_qubo(Q)
sampleset = sampler.sample(bqm, num_reads=500)
best_solution = sampleset.first.sample
selected_elements = [elements[i] for i in range(n_elements) if best_solution[i] == 1]
return selected_elements
# 演示
print("\n=== 量子材料设计:锂电池正极材料 ===\n")
qmd = QuantumMaterialsDesign()
candidate_elements = ['Li', 'Co', 'Ni', 'Mn', 'Al']
target_props = {
'conductivity': 'high',
'stability': 'high',
'cost': 'low'
}
optimized_composition = qmd.optimize_battery_material(candidate_elements, target_props)
print(f"候选元素:{candidate_elements}")
print(f"优化后组成:{optimized_composition}")
print(f"\n推荐材料配方:{''.join(optimized_composition)}O₂")
# 实际案例对应
material_map = {
'LiCoO2': ['Li', 'Co'],
'LiNiMnCoO2 (NMC)': ['Li', 'Ni', 'Mn', 'Co'],
'LiNiCoAlO2 (NCA)': ['Li', 'Ni', 'Co', 'Al'],
}
print("\n对应的实际材料:")
for name, composition in material_map.items():
if set(composition) == set(optimized_composition):
print(f" ✓ {name}")
⚖️ 第十一章:伦理与安全 - 量子AI的潘多拉魔盒
11.1 量子计算对加密的威胁
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import rsa, padding
class QuantumCryptographyThreat:
"""量子密码学威胁分析"""
def __init__(self):
pass
def estimate_shor_time(self, key_size):
"""估算Shor算法破解时间"""
# 简化模型:量子比特数 ~ 2*key_size
# 电路深度 ~ O((log N)³)
n_qubits_needed = 2 * key_size
circuit_depth = (np.log2(2**key_size))**3
# 假设量子门时间100ns
gate_time = 100e-9
# 考虑错误率,需要重复执行
error_rate = 0.001
repetitions = int(1 / (1 - error_rate)**circuit_depth)
total_time = circuit_depth * gate_time * repetitions
return {
'key_size': key_size,
'qubits_needed': n_qubits_needed,
'circuit_depth': circuit_depth,
'estimated_time_seconds': total_time,
'estimated_time_readable': self.format_time(total_time)
}
def format_time(self, seconds):
"""格式化时间"""
if seconds < 60:
return f"{seconds:.2f}秒"
elif seconds < 3600:
return f"{seconds/60:.2f}分钟"
elif seconds < 86400:
return f"{seconds/3600:.2f}小时"
else:
return f"{seconds/86400:.2f}天"
def post_quantum_security_level(self, algorithm):
"""评估后量子安全级别"""
security_levels = {
'RSA-2048': 'vulnerable',
'RSA-4096': 'vulnerable',
'ECC-256': 'vulnerable',
'Lattice-based': 'resistant',
'Hash-based': 'resistant',
'Code-based': 'resistant',
'Multivariate': 'partially resistant'
}
return security_levels.get(algorithm, 'unknown')
# 分析
print("=== 量子计算对加密的威胁分析 ===\n")
qct = QuantumCryptographyThreat()
# 不同密钥长度的破解时间估算
key_sizes = [1024, 2048, 3072, 4096]
print("Shor算法破解RSA密钥估算:\n")
for size in key_sizes:
result = qct.estimate_shor_time(size)
print(f"RSA-{size}:")
print(f" 所需量子比特:{result['qubits_needed']}")
print(f" 电路深度:{result['circuit_depth']:.0f}")
print(f" 估算破解时间:{result['estimated_time_readable']}")
print()
# 后量子算法安全性
print("后量子密码算法安全级别:\n")
algorithms = ['RSA-2048', 'ECC-256', 'Lattice-based', 'Hash-based', 'Code-based']
for algo in algorithms:
level = qct.post_quantum_security_level(algo)
emoji = '❌' if level == 'vulnerable' else '✅' if level == 'resistant' else '⚠️'
print(f"{emoji} {algo:20s}: {level}")
# 可视化
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
# 量子比特需求
ax1.bar([str(s) for s in key_sizes],
[qct.estimate_shor_time(s)['qubits_needed'] for s in key_sizes],
color='purple', alpha=0.7)
ax1.set_xlabel('RSA密钥长度(位)')
ax1.set_ylabel('所需量子比特数')
ax1.set_title('破解RSA所需量子资源')
ax1.grid(True, alpha=0.3, axis='y')
# 安全级别对比
security_score = {
'vulnerable': 0,
'partially resistant': 0.5,
'resistant': 1,
'unknown': 0.25
}
scores = [security_score[qct.post_quantum_security_level(a)] for a in algorithms]
colors = ['red' if s == 0 else 'green' if s == 1 else 'orange' for s in scores]
ax2.barh(algorithms, scores, color=colors, alpha=0.7)
ax2.set_xlabel('抗量子攻击能力')
ax2.set_title('不同加密算法的量子安全性')
ax2.set_xlim([0, 1])
ax2.grid(True, alpha=0.3, axis='x')
plt.tight_layout()
plt.show()
11.2 量子AI偏见放大
class QuantumFairnessAnalyzer:
"""量子AI公平性分析器"""
def __init__(self):
pass
def measure_demographic_parity(self, y_pred, sensitive_attribute):
"""衡量人口统计平价"""
# P(Y=1|A=0) ≈ P(Y=1|A=1)
group_0 = y_pred[sensitive_attribute == 0]
group_1 = y_pred[sensitive_attribute == 1]
rate_0 = np.mean(group_0)
rate_1 = np.mean(group_1)
disparity = abs(rate_0 - rate_1)
return {
'group_0_positive_rate': rate_0,
'group_1_positive_rate': rate_1,
'disparity': disparity,
'fair': disparity < 0.1 # 阈值10%
}
def analyze_quantum_bias_amplification(self, classical_model, quantum_model,
X_test, sensitive_attr):
"""分析量子模型是否放大偏见"""
# 经典模型预测
y_pred_classical = classical_model.predict(X_test)
# 量子模型预测
y_pred_quantum = quantum_model.predict(X_test)
# 计算公平性指标
fairness_classical = self.measure_demographic_parity(
y_pred_classical, sensitive_attr
)
fairness_quantum = self.measure_demographic_parity(
y_pred_quantum, sensitive_attr
)
# 偏见放大因子
bias_amplification = (fairness_quantum['disparity'] /
(fairness_classical['disparity'] + 1e-10))
return {
'classical_fairness': fairness_classical,
'quantum_fairness': fairness_quantum,
'bias_amplification_factor': bias_amplification
}
# 模拟实验
print("\n=== 量子AI公平性分析 ===\n")
# 生成带偏见的数据
np.random.seed(42)
# 敏感属性(例如:性别,0=女性,1=男性)
sensitive_attr = np.random.binomial(1, 0.5, 200)
# 特征(带有偏见:敏感属性影响特征)
X = np.random.randn(200, 4)
X[sensitive_attr == 1] += 0.5 # 男性组特征偏移
# 标签(带偏见)
y = (X[:, 0] + X[:, 1] + 0.3 * sensitive_attr > 0).astype(int)
# 训练经典模型
from sklearn.linear_model import LogisticRegression
classical_model = LogisticRegression()
classical_model.fit(X, y)
# 模拟量子模型(这里用经典模型代替,但假设量子特征映射可能放大偏见)
class MockQuantumModel:
def predict(self, X):
# 模拟量子模型可能放大某些特征
quantum_features = X.copy()
quantum_features[:, 0] *= 1.5 # 放大第一个特征(可能与偏见相关)
# 简单阈值分类
return (quantum_features[:, 0] + quantum_features[:, 1] > 0).astype(int)
quantum_model = MockQuantumModel()
# 分析
qfa = QuantumFairnessAnalyzer()
analysis = qfa.analyze_quantum_bias_amplification(
classical_model, quantum_model, X, sensitive_attr
)
print("经典模型公平性:")
print(f" 群组0正例率:{analysis['classical_fairness']['group_0_positive_rate']:.2%}")
print(f" 群组1正例率:{analysis['classical_fairness']['group_1_positive_rate']:.2%}")
print(f" 差异度:{analysis['classical_fairness']['disparity']:.2%}")
print(f" 是否公平:{'✅' if analysis['classical_fairness']['fair'] else '❌'}")
print("\n量子模型公平性:")
print(f" 群组0正例率:{analysis['quantum_fairness']['group_0_positive_rate']:.2%}")
print(f" 群组1正例率:{analysis['quantum_fairness']['group_1_positive_rate']:.2%}")
print(f" 差异度:{analysis['quantum_fairness']['disparity']:.2%}")
print(f" 是否公平:{'✅' if analysis['quantum_fairness']['fair'] else '❌'}")
print(f"\n偏见放大因子:{analysis['bias_amplification_factor']:.2f}x")
if analysis['bias_amplification_factor'] > 1:
print("⚠️ 警告:量子模型放大了偏见!")
else:
print("✅ 量子模型未放大偏见")
# 可视化
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
models = ['经典模型', '量子模型']
group_0_rates = [
analysis['classical_fairness']['group_0_positive_rate'],
analysis['quantum_fairness']['group_0_positive_rate']
]
group_1_rates = [
analysis['classical_fairness']['group_1_positive_rate'],
analysis['quantum_fairness']['group_1_positive_rate']
]
x = np.arange(len(models))
width = 0.35
axes[0].bar(x - width/2, group_0_rates, width, label='群组0(女性)', color='pink', alpha=0.7)
axes[0].bar(x + width/2, group_1_rates, width, label='群组1(男性)', color='lightblue', alpha=0.7)
axes[0].set_ylabel('正例预测率')
axes[0].set_title('不同群组的预测率对比')
axes[0].set_xticks(x)
axes[0].set_xticklabels(models)
axes[0].legend()
axes[0].grid(True, alpha=0.3, axis='y')
disparities = [
analysis['classical_fairness']['disparity'],
analysis['quantum_fairness']['disparity']
]
colors_disp = ['green' if d < 0.1 else 'orange' if d < 0.2 else 'red' for d in disparities]
axes[1].bar(models, disparities, color=colors_disp, alpha=0.7)
axes[1].axhline(y=0.1, color='green', linestyle='--', label='公平阈值')
axes[1].set_ylabel('群组间差异度')
axes[1].set_title('公平性指标对比')
axes[1].legend()
axes[1].grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()
🚀 第十二章:未来展望 - 通往AGI的量子之路
12.1 量子意识与AGI
理论探讨:量子叠加与意识的自由意志
class QuantumConsciousnessModel:
"""量子意识理论模型(理论探索)"""
def __init__(self, n_qubits=10):
self.n_qubits = n_qubits # 代表"神经元"
def simulate_quantum_decision(self, options):
"""模拟量子决策过程"""
n_options = len(options)
# 创建均匀叠加态(代表所有选项同时存在)
qc = QuantumCircuit(self.n_qubits)
# 制备叠加态
for i in range(min(n_options, self.n_qubits)):
qc.h(i)
# "环境交互"(测量导致坍缩)
qc.measure_all()
# 模拟
from qiskit_aer import AerSimulator
from qiskit import transpile
simulator = AerSimulator()
compiled = transpile(qc, simulator)
job = simulator.run(compiled, shots=1000)
counts = job.result().get_counts()
# 解释结果为决策倾向
decision_weights = {}
for i, option in enumerate(options):
# 计算该选项对应量子态的出现频率
relevant_states = [s for s in counts.keys() if s[-(i+1)] == '1']
weight = sum(counts.get(s, 0) for s in relevant_states) / 1000
decision_weights[option] = weight
return decision_weights
def integrated_information(self, state_vector):
"""计算整合信息Φ(IIT理论)"""
# 简化版整合信息理论(Integrated Information Theory)
# 熵 H(S)
probabilities = np.abs(state_vector)**2
probabilities = probabilities[probabilities > 0]
entropy_total = -np.sum(probabilities * np.log2(probabilities))
# 子系统熵(简化:假设二分)
half = len(state_vector) // 2
probs_1 = probabilities[:half] / np.sum(probabilities[:half])
probs_2 = probabilities[half:] / np.sum(probabilities[half:])
entropy_1 = -np.sum(probs_1 * np.log2(probs_1 + 1e-10))
entropy_2 = -np.sum(probs_2 * np.log2(probs_2 + 1e-10))
# Φ = 总熵 - 子系统熵之和(简化)
phi = entropy_total - (entropy_1 + entropy_2)
return max(phi, 0) # Φ ≥ 0
# 演示
print("\n=== 量子意识模型探索 ===\n")
qcm = QuantumConsciousnessModel(n_qubits=5)
# 决策场景:AI面临道德困境
moral_dilemma = [
"救5个人但伤害1个人",
"不作为让5个人受伤",
"寻找第三种解决方案",
"请求人类决策"
]
print("道德困境决策模拟:")
print("场景:自动驾驶汽车必须选择...\n")
decisions = qcm.simulate_quantum_decision(moral_dilemma)
for option, weight in decisions.items():
bar = '█' * int(weight * 50)
print(f"{option:30s} {bar} {weight:.2%}")
print("\n解释:量子叠加允许系统'同时考虑'所有选项,")
print("测量(决策)时根据量子概率坍缩到特定选择。")
# 计算整合信息
qc_test = QuantumCircuit(5)
for i in range(5):
qc_test.h(i)
qc_test.cx(0, 1)
qc_test.cx(2, 3)
from qiskit.quantum_info import Statevector
state = Statevector(qc_test)
phi = qcm.integrated_information(state.data)
print(f"\n整合信息 Φ = {phi:.4f}")
print("(Φ值越高,系统整合程度越高,理论上'意识'水平越高)")
12.2 量子-经典混合AGI架构
class HybridQuantumClassicalAGI:
"""量子-经典混合AGI架构"""
def __init__(self):
# 经典部分:Transformer
self.classical_brain = self.build_classical_module()
# 量子部分:推理引擎
self.quantum_brain = self.build_quantum_module()
def build_classical_module(self):
"""经典神经网络模块"""
# 简化的Transformer架构
class SimpleTransformer(nn.Module):
def __init__(self, d_model=64, nhead=4):
super().__init__()
self.embedding = nn.Linear(10, d_model)
self.transformer = nn.TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
batch_first=True
)
self.fc = nn.Linear(d_model, 10)
def forward(self, x):
x = self.embedding(x)
x = self.transformer(x)
return self.fc(x)
return SimpleTransformer()
def build_quantum_module(self):
"""量子推理模块"""
n_qubits = 4
quantum_circuit = TwoLocal(
n_qubits,
rotation_blocks=['ry', 'rz'],
entanglement_blocks='cx',
reps=2
)
return quantum_circuit
def hybrid_inference(self, input_data):
"""混合推理流程"""
# 1. 经典预处理
classical_features = self.classical_brain(
torch.FloatTensor(input_data).unsqueeze(0)
)
# 2. 量子增强
quantum_input = classical_features[0].detach().numpy()[:4]
qc = QuantumCircuit(4)
for i, val in enumerate(quantum_input):
qc.ry(val.item(), i)
params = np.random.uniform(0, 2*np.pi, self.quantum_brain.num_parameters)
qc.compose(self.quantum_brain.bind_parameters(params), inplace=True)
from qiskit.quantum_info import Statevector
quantum_state = Statevector(qc)
quantum_features = np.abs(quantum_state.data)**2
# 3. 融合
final_output = np.concatenate([
classical_features[0].detach().numpy()[4:],
quantum_features
])
return final_output
def meta_learning(self, tasks):
"""元学习:学习如何学习"""
print("元学习过程(模拟):")
for i, task in enumerate(tasks):
print(f"\n任务 {i+1}: {task['name']}")
# 经典快速适应
print(" → 经典模块微调...")
# 量子策略优化
print(" → 量子模块参数调整...")
# 跨任务知识迁移
print(" → 提取可迁移知识...")
accuracy = np.random.uniform(0.7, 0.95)
print(f" ✓ 任务准确率: {accuracy:.2%}")
# 演示
print("\n=== 混合量子-经典AGI架构 ===\n")
hybrid_agi = HybridQuantumClassicalAGI()
# 测试推理
test_input = np.random.randn(10)
output = hybrid_agi.hybrid_inference(test_input)
print(f"输入维度: {len(test_input)}")
print(f"输出维度: {len(output)}")
print(f"输出样本: {output[:5]}")
# 元学习演示
meta_tasks = [
{'name': '图像识别', 'type': 'vision'},
{'name': '语言翻译', 'type': 'nlp'},
{'name': '强化学习', 'type': 'rl'},
{'name': '科学推理', 'type': 'reasoning'},
]
hybrid_agi.meta_learning(meta_tasks)
# 架构图(文字描述)
print("\n" + "="*50)
print("混合AGI架构:")
print("="*50)
print("""
输入数据
↓
┌──────────────┐
│ 经典大脑 │ ← Transformer、CNN、RNN
│ (并行计算) │
└──────┬───────┘
↓
┌──────────────┐
│ 量子增强层 │ ← 量子纠缠、叠加
│ (推理优化) │
└──────┬───────┘
↓
┌──────────────┐
│ 融合决策层 │ ← 经典-量子融合
└──────┬───────┘
↓
输出决策
""")
12.3 技术路线图与时间预测
class QuantumAIRoadmap:
"""量子AI技术路线图"""
def __init__(self):
self.milestones = {
2025: {
'quantum_hardware': '100+ 逻辑量子比特,错误率<0.1%',
'algorithms': 'QAOA、VQE商业化应用',
'applications': '金融优化、药物筛选',
'readiness': 0.3
},
2027: {
'quantum_hardware': '1000+ 逻辑量子比特',
'algorithms': '量子机器学习超越经典(特定任务)',
'applications': '材料设计、供应链优化',
'readiness': 0.5
},
2030: {
'quantum_hardware': '10000+ 逻辑量子比特,容错量子计算',
'algorithms': '量子Transformer、量子GAN',
'applications': 'AGI子系统、量子互联网',
'readiness': 0.7
},
2035: {
'quantum_hardware': '百万量子比特级,通用量子计算机',
'algorithms': '量子意识模型、量子强化学习',
'applications': '通用人工智能(AGI)',
'readiness': 0.9
}
}
def visualize_roadmap(self):
"""可视化路线图"""
years = list(self.milestones.keys())
readiness = [self.milestones[y]['readiness'] for y in years]
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(14, 10))
# 技术成熟度曲线
ax1.plot(years, readiness, marker='o', linewidth=3, markersize=10, color='purple')
ax1.fill_between(years, readiness, alpha=0.3, color='purple')
for year, r in zip(years, readiness):
ax1.annotate(f'{r:.0%}', (year, r), textcoords="offset points",
xytext=(0,10), ha='center', fontsize=11, fontweight='bold')
ax1.set_xlabel('年份', fontsize=13)
ax1.set_ylabel('技术成熟度', fontsize=13)
ax1.set_title('量子AI技术成熟度预测曲线', fontsize=15, fontweight='bold')
ax1.grid(True, alpha=0.3)
ax1.set_ylim([0, 1])
# 里程碑时间线
ax2.set_ylim([0, 4])
ax2.set_xlim([2024, 2036])
for i, (year, milestone) in enumerate(self.milestones.items()):
y_pos = 3 - i
# 时间点
ax2.scatter(year, y_pos, s=300, c='red', zorder=3)
# 描述
text = f"{year}\n{milestone['quantum_hardware']}\n{milestone['algorithms']}\n{milestone['applications']}"
ax2.text(year, y_pos - 0.4, text, ha='center', va='top',
fontsize=9, bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.7))
ax2.set_xlabel('年份', fontsize=13)
ax2.set_title('量子AI关键里程碑', fontsize=15, fontweight='bold')
ax2.set_yticks([])
ax2.grid(True, alpha=0.3, axis='x')
plt.tight_layout()
plt.show()
def calculate_agi_probability(self, year):
"""计算实现AGI的概率"""
# 简化的Sigmoid模型
inflection_point = 2032
steepness = 0.5
prob = 1 / (1 + np.exp(-steepness * (year - inflection_point)))
return prob
# 生成路线图
print("\n=== 量子AI技术路线图与预测 ===\n")
roadmap = QuantumAIRoadmap()
print("关键里程碑:\n")
for year, milestone in roadmap.milestones.items():
print(f"📅 {year}年:")
print(f" 硬件:{milestone['quantum_hardware']}")
print(f" 算法:{milestone['algorithms']}")
print(f" 应用:{milestone['applications']}")
print(f" 成熟度:{milestone['readiness']:.0%}\n")
# 可视化
roadmap.visualize_roadmap()
# AGI概率预测
print("\n量子AGI实现概率预测:\n")
future_years = range(2025, 2041, 5)
for year in future_years:
prob = roadmap.calculate_agi_probability(year)
bar = '█' * int(prob * 30)
print(f"{year}年: {bar} {prob:.1%}")
# 最终总结
print("\n" + "="*60)
print(" 总结与展望")
print("="*60)
print("""
量子计算与人工智能的融合代表了人类智慧的新维度。
🔬 科学意义:
• 量子叠加态提供超越经典的计算能力
• 量子纠缠实现前所未有的信息关联
• 量子隧穿加速全局优化搜索
💼 商业价值:
• 金融:投资组合优化、风险评估
• 医疗:药物发现、个性化治疗
• 工业:材料设计、供应链优化
⚠️ 挑战与风险:
• 技术:噪声、退相干、可扩展性
• 伦理:偏见放大、隐私威胁
• 安全:加密破解、算法武器化
🚀 未来方向:
• 2025-2030:NISQ时代,专用量子AI应用
• 2030-2035:容错量子计算,通用量子AI
• 2035+: 量子AGI,人机协同新纪元
关键启示:
量子计算不会完全取代经典AI,而是形成互补的混合架构。
真正的突破在于理解量子-经典协同的最优边界。
下一步行动:
1. 学习Qiskit等量子编程框架
2. 关注IBM、Google量子云平台
3. 探索量子机器学习开源项目
4. 思考量子AI的伦理与治理
未来已来,只是分布不均。
让我们携手探索量子智能的星辰大海!🌌
""")
print("\n作者:DREAMVFIA_OSPM")
print("日期:2025年12月21日")
print("字数:30000+")
print("\n感谢阅读!欢迎在评论区分享您的见解 💬")
print("="*60)
📚 参考文献与延伸阅读
references = {
'量子计算基础': [
'Nielsen & Chuang - Quantum Computation and Quantum Information (2010)',
'Preskill, John - Quantum Computing in the NISQ era (2018)',
'Qiskit官方文档 - https://qiskit.org/documentation/'
],
'量子机器学习': [
'Biamonte et al. - Quantum machine learning (Nature, 2017)',
'Schuld & Petruccione - Supervised Learning with Quantum Computers (2018)',
'Cerezo et al. - Variational Quantum Algorithms (Nature Reviews, 2021)'
],
'量子优化': [
'Farhi et al. - Quantum Approximate Optimization Algorithm (2014)',
'McArdle et al. - Quantum computational chemistry (Reviews, 2020)'
],
'量子纠错': [
'Fowler et al. - Surface codes (Physical Review A, 2012)',
'Terhal - Quantum error correction (Reviews, 2015)'
],
'伦理与安全': [
'Shor, Peter - Polynomial-Time Algorithms (1997)',
'NIST - Post-Quantum Cryptography Standardization (2024)',
'Floridi & Cowls - A Unified Framework of AI Ethics (2019)'
]
}
print("\n📖 推荐学习资源:\n")
for category, papers in references.items():
print(f"【{category}】")
for paper in papers:
print(f" • {paper}")
print()
print("🔗 在线资源:")
print(" • IBM Quantum Experience: https://quantum-computing.ibm.com/")
print(" • Qiskit Textbook: https://qiskit.org/textbook/")
print(" • Google Quantum AI: https://quantumai.google/")
print(" • PennyLane (量子ML库): https://pennylane.ai/")
print(" • Quantum Open Source Foundation: https://qosf.org/")
🎯 实战练习题
print("\n💪 挑战自己:5个实战练习\n")
exercises = [
{
'title': '练习1:构建量子分类器',
'description': '使用Qiskit实现一个4量子比特的分类器,处理Iris数据集',
'difficulty': '⭐⭐⭐',
'hint': '提示:使用ZZFeatureMap + VQC'
},
{
'title': '练习2:量子GAN生成手写数字',
'description': '实现量子生成器+经典判别器,生成MNIST数字',
'difficulty': '⭐⭐⭐⭐',
'hint': '提示:降维到8维,使用3量子比特生成器'
},
{
'title': '练习3:优化投资组合',
'description': '使用QAOA优化真实股票数据的投资组合',
'difficulty': '⭐⭐⭐⭐',
'hint': '提示:从Yahoo Finance获取数据,设置风险约束'
},
{
'title': '练习4:量子纠错编码',
'description': '实现3量子比特的位翻转纠错码',
'difficulty': '⭐⭐⭐⭐⭐',
'hint': '提示:使用多数表决解码策略'
},
{
'title': '练习5:混合量子-经典模型',
'description': '构建Transformer+量子注意力的文本分类器',
'difficulty': '⭐⭐⭐⭐⭐',
'hint': '提示:PyTorch + Qiskit集成,使用torchconnector'
}
]
for i, ex in enumerate(exercises, 1):
print(f"{i}. {ex['title']}")
print(f" 难度:{ex['difficulty']}")
print(f" 任务:{ex['description']}")
print(f" {ex['hint']}\n")
🌟 结语
# 生成词云(概念总结)
from collections import Counter
key_concepts = [
'quantum', 'superposition', 'entanglement', 'qubits', 'VQE', 'QAOA',
'quantum kernel', 'variational algorithms', 'quantum neural network',
'error mitigation', 'decoherence', 'quantum gates', 'Hadamard',
'CNOT', 'Grover', 'Shor', 'quantum supremacy', 'NISQ', 'fault-tolerant',
'AGI', 'quantum AI', 'hybrid architecture', 'quantum optimization',
'quantum NLP', 'quantum GAN', 'post-quantum cryptography', 'quantum ethics'
] * 3 # 重复以体现权重
concept_freq = Counter(key_concepts)
print("\n🏆 本文核心概念TOP 10:\n")
for i, (concept, freq) in enumerate(concept_freq.most_common(10), 1):
bar = '▓' * (freq // 2)
print(f"{i:2d}. {concept:25s} {bar} ({freq})")
print("\n" + "="*60)
print(" 🎓 恭喜!您已完成量子AI全景之旅")
print("="*60)
print("""
从量子比特的微观世界,到AGI的宏伟愿景,
您已掌握:
✅ 15,000+ 行代码
✅ 50+ 核心概念
✅ 12个深度章节
✅ 量子-经典混合架构
继续探索:
🔬 动手实践Qiskit项目
📚 深入学习量子算法理论
💡 关注最新研究论文
🤝 加入量子计算社区
记住:
"如果你认为自己理解了量子力学,
那说明你还没有真正理解它。"
------ 理查德·费曼
但这不妨碍我们利用它创造未来!🚀
""")
print("\n📬 联系作者:")
print(" CSDN: @DREAMVFIA_OSPM")
print(" GitHub: [您的项目链接]")
print(" Email: [联系邮箱]")
print("\n💝 如果本文对您有帮助,请:")
print(" 👍 点赞")
print(" 💬 评论")
print(" ⭐ 收藏")
print(" 🔄 转发")
print("\n下期预告:《量子计算+区块链:去中心化智能的未来》")
print("敬请期待!\n")
🏁 文章完结
总字数统计:
- 第一部分(1-5章)
- 第二部分(6-12章)
- 总计:103,000+ 字
代码统计:
- Python代码块:60+
- 总代码行数:15,000+
- 涵盖框架:Qiskit, PyTorch, NumPy, Matplotlib, Scikit-learn
涵盖主题 :
✅ 量子计算基础理论
✅ 量子机器学习算法
✅ 量子神经网络架构
✅ 量子优化技术
✅ 量子生成对抗网络
✅ 量子SVM实战
✅ 量子NLP应用
✅ 噪声与纠错
✅ 产业应用案例
✅ 伦理与安全
✅ AGI未来展望
✅ 技术路线图
适合读者:
- AI/ML工程师
- 量子计算研究者
- 计算机科学学生
- 技术管理者
- 科技爱好者
版权声明 :本文为DREAMVFIA_OSPM原创,遵循CC BY-NC-SA 4.0协议。
转载请注明出处,禁止商业用途。
感谢阅读!🙏