Day 46 TensorBoard 使用介绍

文章目录

  • [DAY 46 TensorBoard 使用介绍](#DAY 46 TensorBoard 使用介绍)

DAY 46 TensorBoard 使用介绍

学习目标

  • 理解 TensorBoard 的作用与数据流转方式
  • 掌握 SummaryWriter 的核心用法(标量、图像、直方图、计算图)
  • 通过 CIFAR-10 的 MLP / CNN 实战,生成可视化日志

一、TensorBoard 概览

TensorBoard 是深度学习训练过程的可视化面板,可用于:

  • 观察 loss / acc 曲线,判断收敛或过拟合
  • 查看模型结构图,快速确认网络连接
  • 记录样本图像、参数分布,辅助排查训练异常

工作原理:训练时把指标、图像、直方图等写入日志文件(*.tfevents),TensorBoard 读取该目录并在网页展示。

二、准备环境与数据

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Subset
from torch.utils.tensorboard import SummaryWriter
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import make_grid

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
复制代码
Using device: cuda
python 复制代码
# 为了演示更快,这里截取少量样本;想要完整训练可去掉 Subset
def get_loaders(batch_size=128, limit_train=5000, limit_test=1000):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616)),
    ])

    train_set = torchvision.datasets.CIFAR10(root='data', train=True, download=True, transform=transform)
    test_set = torchvision.datasets.CIFAR10(root='data', train=False, download=True, transform=transform)

    if limit_train:
        train_set = Subset(train_set, range(limit_train))
    if limit_test:
        test_set = Subset(test_set, range(limit_test))

    train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
    test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
    
    print(f'Train samples: {len(train_set)}, Test samples: {len(test_set)}')
    return train_loader, test_loader

train_loader, test_loader = get_loaders()
images, labels = next(iter(train_loader))
print('Sample batch shape:', images.shape)
复制代码
Train samples: 5000, Test samples: 1000
Sample batch shape: torch.Size([128, 3, 32, 32])

三、创建 SummaryWriter 与基础可视化

python 复制代码
# 创建 writer,日志会自动追加编号避免覆盖
writer = SummaryWriter(log_dir='runs/day46_intro')

# 记录一组训练图像
img_grid = make_grid(images[:16], nrow=8, normalize=True, scale_each=True)
writer.add_image('TrainSamples', img_grid, global_step=0)
writer.flush()
print('Logged sample images to runs/day46_intro')
复制代码
Logged sample images to runs/day46_intro

记录模型结构(Graph)

python 复制代码
class SimpleMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Flatten(),
            nn.Linear(3 * 32 * 32, 256),
            nn.ReLU(),
            nn.Linear(256, 10)
        )

    def forward(self, x):
        return self.model(x)

mlp = SimpleMLP().to(device)
dummy_input = images[:1].to(device)
writer.add_graph(mlp, dummy_input)
writer.flush()
print('Logged MLP graph')
复制代码
Logged MLP graph

四、MLP 训练 + TensorBoard 日志

python 复制代码
def train_mlp(epochs=2, log_dir='runs/day46_mlp'):
    model = SimpleMLP().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    writer = SummaryWriter(log_dir=log_dir)
    writer.add_graph(model, images[:1].to(device))

    global_step = 0
    for epoch in range(epochs):
        model.train()
        running_loss, correct, total = 0.0, 0, 0
        for batch_idx, (inputs, targets) in enumerate(train_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            if batch_idx % 50 == 0:
                writer.add_scalar('Loss/train', loss.item(), global_step)
                writer.add_scalar('Acc/train', correct / total, global_step)
            global_step += 1

        epoch_loss = running_loss / total
        epoch_acc = correct / total
        writer.add_scalar('Epoch/Loss', epoch_loss, epoch)
        writer.add_scalar('Epoch/Acc', epoch_acc, epoch)
        for name, param in model.named_parameters():
            if 'weight' in name:
                writer.add_histogram(name, param, epoch)

        print(f'Epoch {epoch+1}: loss={epoch_loss:.4f}, acc={epoch_acc:.4f}')

    writer.close()
    return model

mlp_model = train_mlp()
复制代码
Epoch 1: loss=2.0121, acc=0.3234
Epoch 2: loss=1.6385, acc=0.4348

五、CNN 训练 + TensorBoard 日志

python 复制代码
class SimpleCNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64 * 8 * 8, 128),
            nn.ReLU(),
            nn.Linear(128, 10)
        )

    def forward(self, x):
        x = self.features(x)
        return self.classifier(x)


def train_cnn(epochs=2, log_dir='runs/day46_cnn'):
    model = SimpleCNN().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    writer = SummaryWriter(log_dir=log_dir)
    writer.add_graph(model, images[:1].to(device))

    global_step = 0
    for epoch in range(epochs):
        model.train()
        running_loss, correct, total = 0.0, 0, 0
        for batch_idx, (inputs, targets) in enumerate(train_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            if batch_idx % 50 == 0:
                writer.add_scalar('Loss/train', loss.item(), global_step)
                writer.add_scalar('Acc/train', correct / total, global_step)
            global_step += 1

        epoch_loss = running_loss / total
        epoch_acc = correct / total
        writer.add_scalar('Epoch/Loss', epoch_loss, epoch)
        writer.add_scalar('Epoch/Acc', epoch_acc, epoch)
        writer.add_histogram('features.conv1.weight', model.features[0].weight, epoch)
        writer.add_histogram('features.conv2.weight', model.features[3].weight, epoch)

        print(f'Epoch {epoch+1}: loss={epoch_loss:.4f}, acc={epoch_acc:.4f}')

    writer.close()
    return model

cnn_model = train_cnn()
复制代码
Epoch 1: loss=1.9511, acc=0.2924
Epoch 2: loss=1.5537, acc=0.4464

六、启动 TensorBoard

训练完成后在项目根目录执行:

python 复制代码
# tensorboard --logdir runs
# 浏览器打开 http://localhost:6006

七、常见问题与建议

  • 直方图记录频率不宜过高,可按 epoch 记录减少日志体积
  • 图像可用于检查数据增强是否符合预期
  • 若曲线剧烈抖动,优先检查学习率、数据预处理和 batch size

@浙大疏锦行

相关推荐
哥只是传说中的小白几秒前
无需验证手机Sora2也能用!视频生成,创建角色APi接入教程,开发小白也能轻松接入
数据库·人工智能
lkbhua莱克瓦242 分钟前
参数如何影响着大语言模型
人工智能·llm·大语言模型
AI人工智能+4 分钟前
车辆合格证识别技术:通过计算机视觉与自然语言处理的深度融合,解决了传统人工录入效率低、易出错的问题
深度学习·ocr·车辆合格证识别
北京盛世宏博5 分钟前
数据可追溯 + 加密传输:以太网温湿度变送器守护涉密档案安全
大数据·运维·人工智能·档案温湿度
阿星AI工作室6 分钟前
魔改豆包输入法变电脑版,立即拥有千元AI语音输入法typeless平替
前端·人工智能
wenzhangli77 分钟前
SkillFlow:回归本质,重新定义AI时代流程管控
人工智能
m0_603888717 分钟前
Over-Searching in Search-Augmented Large Language Models
人工智能·ai·语言模型·自然语言处理·论文速览
狮子座明仔8 分钟前
GDPO:英伟达提出多奖励强化学习的“解耦归一化“策略,解决GRPO的优势崩溃问题
人工智能·gpt·语言模型·自然语言处理
rgb2gray9 分钟前
论文深度解析:基于大语言模型的城市公园多维度感知解码与公平性提升
大数据·人工智能·机器学习·语言模型·自然语言处理·数据分析·可解释
草莓熊Lotso9 分钟前
Qt 信号与槽深度解析:从基础用法到高级实战(含 Lambda 表达式)
java·运维·开发语言·c++·人工智能·qt·数据挖掘