Day 46 TensorBoard 使用介绍

文章目录

  • [DAY 46 TensorBoard 使用介绍](#DAY 46 TensorBoard 使用介绍)

DAY 46 TensorBoard 使用介绍

学习目标

  • 理解 TensorBoard 的作用与数据流转方式
  • 掌握 SummaryWriter 的核心用法(标量、图像、直方图、计算图)
  • 通过 CIFAR-10 的 MLP / CNN 实战,生成可视化日志

一、TensorBoard 概览

TensorBoard 是深度学习训练过程的可视化面板,可用于:

  • 观察 loss / acc 曲线,判断收敛或过拟合
  • 查看模型结构图,快速确认网络连接
  • 记录样本图像、参数分布,辅助排查训练异常

工作原理:训练时把指标、图像、直方图等写入日志文件(*.tfevents),TensorBoard 读取该目录并在网页展示。

二、准备环境与数据

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Subset
from torch.utils.tensorboard import SummaryWriter
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import make_grid

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
复制代码
Using device: cuda
python 复制代码
# 为了演示更快,这里截取少量样本;想要完整训练可去掉 Subset
def get_loaders(batch_size=128, limit_train=5000, limit_test=1000):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616)),
    ])

    train_set = torchvision.datasets.CIFAR10(root='data', train=True, download=True, transform=transform)
    test_set = torchvision.datasets.CIFAR10(root='data', train=False, download=True, transform=transform)

    if limit_train:
        train_set = Subset(train_set, range(limit_train))
    if limit_test:
        test_set = Subset(test_set, range(limit_test))

    train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
    test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
    
    print(f'Train samples: {len(train_set)}, Test samples: {len(test_set)}')
    return train_loader, test_loader

train_loader, test_loader = get_loaders()
images, labels = next(iter(train_loader))
print('Sample batch shape:', images.shape)
复制代码
Train samples: 5000, Test samples: 1000
Sample batch shape: torch.Size([128, 3, 32, 32])

三、创建 SummaryWriter 与基础可视化

python 复制代码
# 创建 writer,日志会自动追加编号避免覆盖
writer = SummaryWriter(log_dir='runs/day46_intro')

# 记录一组训练图像
img_grid = make_grid(images[:16], nrow=8, normalize=True, scale_each=True)
writer.add_image('TrainSamples', img_grid, global_step=0)
writer.flush()
print('Logged sample images to runs/day46_intro')
复制代码
Logged sample images to runs/day46_intro

记录模型结构(Graph)

python 复制代码
class SimpleMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Flatten(),
            nn.Linear(3 * 32 * 32, 256),
            nn.ReLU(),
            nn.Linear(256, 10)
        )

    def forward(self, x):
        return self.model(x)

mlp = SimpleMLP().to(device)
dummy_input = images[:1].to(device)
writer.add_graph(mlp, dummy_input)
writer.flush()
print('Logged MLP graph')
复制代码
Logged MLP graph

四、MLP 训练 + TensorBoard 日志

python 复制代码
def train_mlp(epochs=2, log_dir='runs/day46_mlp'):
    model = SimpleMLP().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    writer = SummaryWriter(log_dir=log_dir)
    writer.add_graph(model, images[:1].to(device))

    global_step = 0
    for epoch in range(epochs):
        model.train()
        running_loss, correct, total = 0.0, 0, 0
        for batch_idx, (inputs, targets) in enumerate(train_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            if batch_idx % 50 == 0:
                writer.add_scalar('Loss/train', loss.item(), global_step)
                writer.add_scalar('Acc/train', correct / total, global_step)
            global_step += 1

        epoch_loss = running_loss / total
        epoch_acc = correct / total
        writer.add_scalar('Epoch/Loss', epoch_loss, epoch)
        writer.add_scalar('Epoch/Acc', epoch_acc, epoch)
        for name, param in model.named_parameters():
            if 'weight' in name:
                writer.add_histogram(name, param, epoch)

        print(f'Epoch {epoch+1}: loss={epoch_loss:.4f}, acc={epoch_acc:.4f}')

    writer.close()
    return model

mlp_model = train_mlp()
复制代码
Epoch 1: loss=2.0121, acc=0.3234
Epoch 2: loss=1.6385, acc=0.4348

五、CNN 训练 + TensorBoard 日志

python 复制代码
class SimpleCNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64 * 8 * 8, 128),
            nn.ReLU(),
            nn.Linear(128, 10)
        )

    def forward(self, x):
        x = self.features(x)
        return self.classifier(x)


def train_cnn(epochs=2, log_dir='runs/day46_cnn'):
    model = SimpleCNN().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    writer = SummaryWriter(log_dir=log_dir)
    writer.add_graph(model, images[:1].to(device))

    global_step = 0
    for epoch in range(epochs):
        model.train()
        running_loss, correct, total = 0.0, 0, 0
        for batch_idx, (inputs, targets) in enumerate(train_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            if batch_idx % 50 == 0:
                writer.add_scalar('Loss/train', loss.item(), global_step)
                writer.add_scalar('Acc/train', correct / total, global_step)
            global_step += 1

        epoch_loss = running_loss / total
        epoch_acc = correct / total
        writer.add_scalar('Epoch/Loss', epoch_loss, epoch)
        writer.add_scalar('Epoch/Acc', epoch_acc, epoch)
        writer.add_histogram('features.conv1.weight', model.features[0].weight, epoch)
        writer.add_histogram('features.conv2.weight', model.features[3].weight, epoch)

        print(f'Epoch {epoch+1}: loss={epoch_loss:.4f}, acc={epoch_acc:.4f}')

    writer.close()
    return model

cnn_model = train_cnn()
复制代码
Epoch 1: loss=1.9511, acc=0.2924
Epoch 2: loss=1.5537, acc=0.4464

六、启动 TensorBoard

训练完成后在项目根目录执行:

python 复制代码
# tensorboard --logdir runs
# 浏览器打开 http://localhost:6006

七、常见问题与建议

  • 直方图记录频率不宜过高,可按 epoch 记录减少日志体积
  • 图像可用于检查数据增强是否符合预期
  • 若曲线剧烈抖动,优先检查学习率、数据预处理和 batch size

@浙大疏锦行

相关推荐
Robot侠1 小时前
ROS1从入门到精通 10:URDF机器人建模(从零构建机器人模型)
人工智能·机器人·ros·机器人操作系统·urdf机器人建模
阿里云大数据AI技术2 小时前
DataWorks 又又又升级了,这次我们通过 Arrow 列存格式让数据同步速度提升10倍!
大数据·人工智能
做科研的周师兄2 小时前
中国土壤有机质数据集
人工智能·算法·机器学习·分类·数据挖掘
IT一氪2 小时前
一款 AI 驱动的 Word 文档翻译工具
人工智能·word
lovingsoft2 小时前
Vibe coding 氛围编程
人工智能
百***07452 小时前
GPT-Image-1.5 极速接入全流程及关键要点
人工智能·gpt·计算机视觉
yiersansiwu123d2 小时前
AI二创的版权迷局与健康生态构建之道
人工智能
Narrastory2 小时前
拆解指数加权平均:5 分钟看懂机器学习的 “数据平滑神器”
人工智能·机器学习
SelectDB2 小时前
慢 SQL 诊断准确率 99.99%,天翼云基于 Apache Doris MCP 的 AI 智能运维实践
数据库·人工智能·apache