Day 46 TensorBoard 使用介绍

文章目录

  • [DAY 46 TensorBoard 使用介绍](#DAY 46 TensorBoard 使用介绍)

DAY 46 TensorBoard 使用介绍

学习目标

  • 理解 TensorBoard 的作用与数据流转方式
  • 掌握 SummaryWriter 的核心用法(标量、图像、直方图、计算图)
  • 通过 CIFAR-10 的 MLP / CNN 实战,生成可视化日志

一、TensorBoard 概览

TensorBoard 是深度学习训练过程的可视化面板,可用于:

  • 观察 loss / acc 曲线,判断收敛或过拟合
  • 查看模型结构图,快速确认网络连接
  • 记录样本图像、参数分布,辅助排查训练异常

工作原理:训练时把指标、图像、直方图等写入日志文件(*.tfevents),TensorBoard 读取该目录并在网页展示。

二、准备环境与数据

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Subset
from torch.utils.tensorboard import SummaryWriter
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import make_grid

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
复制代码
Using device: cuda
python 复制代码
# 为了演示更快,这里截取少量样本;想要完整训练可去掉 Subset
def get_loaders(batch_size=128, limit_train=5000, limit_test=1000):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616)),
    ])

    train_set = torchvision.datasets.CIFAR10(root='data', train=True, download=True, transform=transform)
    test_set = torchvision.datasets.CIFAR10(root='data', train=False, download=True, transform=transform)

    if limit_train:
        train_set = Subset(train_set, range(limit_train))
    if limit_test:
        test_set = Subset(test_set, range(limit_test))

    train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
    test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
    
    print(f'Train samples: {len(train_set)}, Test samples: {len(test_set)}')
    return train_loader, test_loader

train_loader, test_loader = get_loaders()
images, labels = next(iter(train_loader))
print('Sample batch shape:', images.shape)
复制代码
Train samples: 5000, Test samples: 1000
Sample batch shape: torch.Size([128, 3, 32, 32])

三、创建 SummaryWriter 与基础可视化

python 复制代码
# 创建 writer,日志会自动追加编号避免覆盖
writer = SummaryWriter(log_dir='runs/day46_intro')

# 记录一组训练图像
img_grid = make_grid(images[:16], nrow=8, normalize=True, scale_each=True)
writer.add_image('TrainSamples', img_grid, global_step=0)
writer.flush()
print('Logged sample images to runs/day46_intro')
复制代码
Logged sample images to runs/day46_intro

记录模型结构(Graph)

python 复制代码
class SimpleMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Flatten(),
            nn.Linear(3 * 32 * 32, 256),
            nn.ReLU(),
            nn.Linear(256, 10)
        )

    def forward(self, x):
        return self.model(x)

mlp = SimpleMLP().to(device)
dummy_input = images[:1].to(device)
writer.add_graph(mlp, dummy_input)
writer.flush()
print('Logged MLP graph')
复制代码
Logged MLP graph

四、MLP 训练 + TensorBoard 日志

python 复制代码
def train_mlp(epochs=2, log_dir='runs/day46_mlp'):
    model = SimpleMLP().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    writer = SummaryWriter(log_dir=log_dir)
    writer.add_graph(model, images[:1].to(device))

    global_step = 0
    for epoch in range(epochs):
        model.train()
        running_loss, correct, total = 0.0, 0, 0
        for batch_idx, (inputs, targets) in enumerate(train_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            if batch_idx % 50 == 0:
                writer.add_scalar('Loss/train', loss.item(), global_step)
                writer.add_scalar('Acc/train', correct / total, global_step)
            global_step += 1

        epoch_loss = running_loss / total
        epoch_acc = correct / total
        writer.add_scalar('Epoch/Loss', epoch_loss, epoch)
        writer.add_scalar('Epoch/Acc', epoch_acc, epoch)
        for name, param in model.named_parameters():
            if 'weight' in name:
                writer.add_histogram(name, param, epoch)

        print(f'Epoch {epoch+1}: loss={epoch_loss:.4f}, acc={epoch_acc:.4f}')

    writer.close()
    return model

mlp_model = train_mlp()
复制代码
Epoch 1: loss=2.0121, acc=0.3234
Epoch 2: loss=1.6385, acc=0.4348

五、CNN 训练 + TensorBoard 日志

python 复制代码
class SimpleCNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64 * 8 * 8, 128),
            nn.ReLU(),
            nn.Linear(128, 10)
        )

    def forward(self, x):
        x = self.features(x)
        return self.classifier(x)


def train_cnn(epochs=2, log_dir='runs/day46_cnn'):
    model = SimpleCNN().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    writer = SummaryWriter(log_dir=log_dir)
    writer.add_graph(model, images[:1].to(device))

    global_step = 0
    for epoch in range(epochs):
        model.train()
        running_loss, correct, total = 0.0, 0, 0
        for batch_idx, (inputs, targets) in enumerate(train_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            if batch_idx % 50 == 0:
                writer.add_scalar('Loss/train', loss.item(), global_step)
                writer.add_scalar('Acc/train', correct / total, global_step)
            global_step += 1

        epoch_loss = running_loss / total
        epoch_acc = correct / total
        writer.add_scalar('Epoch/Loss', epoch_loss, epoch)
        writer.add_scalar('Epoch/Acc', epoch_acc, epoch)
        writer.add_histogram('features.conv1.weight', model.features[0].weight, epoch)
        writer.add_histogram('features.conv2.weight', model.features[3].weight, epoch)

        print(f'Epoch {epoch+1}: loss={epoch_loss:.4f}, acc={epoch_acc:.4f}')

    writer.close()
    return model

cnn_model = train_cnn()
复制代码
Epoch 1: loss=1.9511, acc=0.2924
Epoch 2: loss=1.5537, acc=0.4464

六、启动 TensorBoard

训练完成后在项目根目录执行:

python 复制代码
# tensorboard --logdir runs
# 浏览器打开 http://localhost:6006

七、常见问题与建议

  • 直方图记录频率不宜过高,可按 epoch 记录减少日志体积
  • 图像可用于检查数据增强是否符合预期
  • 若曲线剧烈抖动,优先检查学习率、数据预处理和 batch size

@浙大疏锦行

相关推荐
晚烛12 小时前
CANN + 物理信息神经网络(PINNs):求解偏微分方程的新范式
javascript·人工智能·flutter·html·零售
爱吃烤鸡翅的酸菜鱼12 小时前
CANN ops-math向量运算与特殊函数实现解析
人工智能·aigc
波动几何13 小时前
OpenClaw 构建指南:打造智能多工具编排运行时框架
人工智能
程序猿追13 小时前
深度解码AI之魂:CANN Compiler 核心架构与技术演进
人工智能·架构
新缸中之脑13 小时前
Figma Make 提示工程
人工智能·figma
赫尔·普莱蒂科萨·帕塔13 小时前
智能体工程
人工智能·机器人·软件工程·agi
觉醒大王13 小时前
AI写的青基中了
人工智能·笔记·深度学习·学习·职场和发展·学习方法
深鱼~13 小时前
深度剖析ops-transformer:LayerNorm与GEMM的融合优化
人工智能·深度学习·transformer
哈__13 小时前
CANN图优化技术:深度学习模型的编译器魔法
人工智能·深度学习
灰灰勇闯IT13 小时前
神经网络的基石——深度解析 CANN ops-nn 算子库如何赋能昇腾 AI
人工智能·深度学习·神经网络