问题 A: E001 数的划分
回溯
n里面拆i = 1...n/2 , n = i + ( n - i ) 第二层
n - i里面拆x = i... (n - i) / 2 , n - i = x + (n - i - x) 第三层
cpp
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
int cnt;//记录分法的全局变量
void backtracking(int depth,int start,int n,int k){
//已经分出k份,增加一个分法
if(depth == k){
if(start <= n)cnt++;
return;
}
//还没到,开始拆分
for(int i = start;i <= n / 2;i++){ //for的动作代表不断拆不同的数
depth++;//进入下一层拆分
backtracking(depth,i,n - i,k);//开始拆更小的数n-i,从i开始拆
depth--;//回溯到上一层,继续循环
}
}
int main(){
int n,k;
while(scanf("%d%d",&n,&k) != EOF){
cnt = 0;
backtracking(1,1,n,k);//第一层,从1开始拆n
printf("%d\n",cnt);
}
}
动态规划
dp[i][j]含义:把数字i分成j份所得的划分总数。
dp数组初始化:dp[i][1] = 1; dp[0][j] = 0
递推公式:S[i][j]=s[i-1][j-1]+s[i-j][j]
推导:S[i][j]=s[i-j][1]+ s[i-j][2]+ s[i-j][3]+...+ s[i-j][j] 先分成j个1份,剩下的i-j分成1份+2份+...j份分法
S[i-1][j-1]=s[(i-1)-(j-1)][1]+ s[(i-1)-(j-1)][2]+...+s[(i-1)-(j-1)][j-1]
cpp
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
int dp[300][10] = {0};
int main(){
int n,k;
//初始化
for(int i = 1;i <= 299;i++){
dp[i][1] = 1;
}
while(scanf("%d%d",&n,&k) != EOF){
for(int i = 1;i <= n;i++){
for(int j = 2;j <= k;j++){
if(i >= j)dp[i][j] = dp[i - 1][j - 1] + dp[i - j][j];
else break;
}
}
printf("%d\n",dp[n][k]);
}
}
E002 闪避湖泊
cpp
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dir[][2] = {
{1,0},{-1,0},{0,-1},{0,1}
};
int graph[102][102] = {0};
int visit[102][102] = {0};
int maxsize = 0;
int mian = 0;
int n,m,k;
int bfs(int r,int c){
if(r < 1 || r > n || c < 1 || c > m || visit[r][c]){
return 0;
}
if(visit[r][c] || graph[r][c] == 0) return 0;
visit[r][c] = 1;
int ret = 1;
for(int i = 0;i < 4;i++){
ret += bfs(r + dir[i][0],c + dir[i][1]);
}
return ret;
}
int main(){
while(scanf("%d%d%d",&n,&m,&k) != EOF){
maxsize = 0;
memset(graph,0,sizeof(graph));
memset(visit,0,sizeof(visit));
for(int i = 0;i < k;i++){
int r,c;
scanf("%d%d",&r,&c);
graph[r][c] = 1;
}
for(int i = 1;i <= n;i++){
for(int j = 1;j <= m;j++){
if(graph[i][j] == 1 && visit[i][j] == 0){
maxsize = max(maxsize,bfs(i,j));
}
}
}
printf("%d\n",maxsize);
}
}