基于MATLAB的图像融合方法的实现,涵盖了IHS、PCA、拉普拉斯、PCNN和小波变换。这些方法各有优势,适用于不同的应用场景。
1. IHS融合方法
IHS(Intensity-Hue-Saturation)融合方法通过将图像从RGB空间转换到IHS空间,然后用高分辨率图像替换亮度分量,最后转换回RGB空间。
matlab
function fusedImage = IHSFusion(lowResImage, highResImage)
% 将低分辨率图像和高分辨率图像转换到IHS空间
lowResIHS = rgb2ihs(lowResImage);
highResIHS = rgb2ihs(highResImage);
% 替换亮度分量
lowResIHS(:, :, 1) = highResIHS(:, :, 1);
% 转换回RGB空间
fusedImage = ihs2rgb(lowResIHS);
end
function IHS = rgb2ihs(rgbImage)
% RGB到IHS的转换
IHS = rgb2gray(rgbImage);
end
function rgbImage = ihs2rgb(IHS)
% IHS到RGB的转换
rgbImage = gray2rgb(IHS);
end
2. PCA融合方法
PCA(主成分分析)融合方法通过线性变换将多光谱图像的大部分空间信息从光谱信息中分离出来,然后将全色图像和第一主分量图像进行直方图匹配,最后将第一主分量用全色图像替换并做逆变换得到融合图像。
matlab
function fusedImage = PCAFusion(lowResImage, highResImage)
% 计算PCA
[coeff, score] = pca(double(reshape(lowResImage, [], 3)));
principalComponents = reshape(score, size(lowResImage, 1), size(lowResImage, 2), 3);
% 替换第一主分量
principalComponents(:, :, 1) = highResImage;
% 逆PCA变换
fusedImage = reshape(principalComponents * coeff, size(lowResImage));
end
3. 拉普拉斯融合方法
拉普拉斯融合方法通过拉普拉斯金字塔分解图像,然后在不同层次上融合细节信息,最后通过逆金字塔变换重建图像。
matlab
function fusedImage = LaplacianFusion(lowResImage, highResImage)
% 拉普拉斯金字塔分解
lowResPyramid = laplacianPyramid(lowResImage);
highResPyramid = laplacianPyramid(highResImage);
% 融合金字塔
fusedPyramid = cell(size(lowResPyramid));
for i = 1:length(lowResPyramid)
fusedPyramid{i} = (lowResPyramid{i} + highResPyramid{i}) / 2;
end
% 逆金字塔变换
fusedImage = inverseLaplacianPyramid(fusedPyramid);
end
function pyramid = laplacianPyramid(image)
% 拉普拉斯金字塔分解
pyramid = {};
for i = 1:3
image = pyrDown(image);
pyramid{i} = pyrUp(image);
end
end
function image = inverseLaplacianPyramid(pyramid)
% 逆拉普拉斯金字塔变换
image = pyramid{end};
for i = length(pyramid)-1:-1:1
image = pyrUp(image) + pyramid{i};
end
end
4. PCNN融合方法
PCNN(脉冲耦合神经网络)融合方法通过模拟生物视觉系统中的神经元活动,对图像进行融合。
matlab
function fusedImage = PCNNFusion(lowResImage, highResImage)
% 初始化PCNN
[rows, cols] = size(lowResImage);
Y = zeros(rows, cols);
S = double(lowResImage) + double(highResImage);
% PCNN参数
Vt = 100;
alpha = 0.1;
beta = 0.2;
delta = 0.1;
% 迭代
for t = 1:10
F = S;
L = Y;
U = F .* (1 + beta * L);
Y = U > Vt;
end
% 融合图像
fusedImage = uint8(Y);
end
5. 小波融合方法
小波融合方法通过小波变换将图像分解为不同尺度的细节和逼近分量,然后在不同尺度上融合细节信息,最后通过逆小波变换重建图像。
matlab
function fusedImage = WaveletFusion(lowResImage, highResImage)
% 小波变换
[C1, S1] = wavedec2(lowResImage, 2, 'db1');
[C2, S2] = wavedec2(highResImage, 2, 'db1');
% 融合小波系数
fusedC = (C1 + C2) / 2;
% 逆小波变换
fusedImage = uint8(waverec2(fusedC, S1, 'db1'));
end
参考代码 图像融合 IHS PCA 拉普拉斯 PCNN 小波 www.youwenfan.com/contentcso/79712.html
调用示例
matlab
% 加载图像
lowResImage = imread('low_res_image.jpg');
highResImage = imread('high_res_image.jpg');
% IHS融合
fusedIHS = IHSFusion(lowResImage, highResImage);
% PCA融合
fusedPCA = PCAFusion(lowResImage, highResImage);
% 拉普拉斯融合
fusedLaplacian = LaplacianFusion(lowResImage, highResImage);
% PCNN融合
fusedPCNN = PCNNFusion(lowResImage, highResImage);
% 小波融合
fusedWavelet = WaveletFusion(lowResImage, highResImage);
% 显示结果
figure;
subplot(2, 3, 1);
imshow(lowResImage);
title('Low Resolution Image');
subplot(2, 3, 2);
imshow(highResImage);
title('High Resolution Image');
subplot(2, 3, 3);
imshow(fusedIHS);
title('IHS Fusion');
subplot(2, 3, 4);
imshow(fusedPCA);
title('PCA Fusion');
subplot(2, 3, 5);
imshow(fusedLaplacian);
title('Laplacian Fusion');
subplot(2, 3, 6);
imshow(fusedWavelet);
title('Wavelet Fusion');
结论
以上实现了基于IHS、PCA、拉普拉斯、PCNN和小波变换的图像融合方法。每种方法都有其独特的优势,适用于不同的应用场景。