【CVPR】3D Object Detection with Geometry-Aware Diffusion Features

论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Xu_3DiffTection_3D_Object_Detection_with_Geometry-Aware_Diffusion_Features_CVPR_2024_paper.pdf

1、效果

其实验结果(如大幅超越Cube-RCNN)也验证了这套方法的有效性。

2、主要贡献

通过视图合成增强具有3D感知的预训练2D扩散模型;将这些特征应用于3D检测任务和目标领域;进一步提高检测性能。

3、摘要

3DIFFTECTION是一个"先赋予几何感知,再进行检测微调"​ 的两阶段框架。它巧妙地利用无需3D标注的图片(如视频帧)​ 来教会一个扩散模型"理解3D几何",然后将这个拥有了3D"大脑"的模型变成一个强大的3D目标检测器。

4、思路

4.1 ControlNet

展示的 "Geometric ControlNet with Epipolar warp Operator"​ 正是其第一阶段(几何调优)的核心技术实现

具体来说:

几何调优(对应图中的架构):

目标:不是为了生成漂亮的图片,而是为了让扩散模型的特征具备3D感知能力。

方法:在Stable Diffusion的编码器上,附加一个可训练的Geometric ControlNet(如图中橙色部分所示)。它接收一张条件图片​ 和目标相机位姿。

关键操作:通过极线扭曲算子,将条件图片的特征,根据两张图片之间的相机几何关系(极线几何),"扭曲"到目标视角。这个过程强制模型学习如何根据一张图推理另一视角下的场景内容,本质上是在学习3D结构。

优势:这个训练只需要有相机位姿的图片对(如视频帧),完全不需要3D框或点云标注,解决了数据标注瓶颈。

4.2 语义调优

目标:将已经具备3D感知能力的模型特征,适配到具体的3D目标检测任务上。

方法:在几何调优后的模型基础上,使用带有3D检测标注的目标数据集​ 进行进一步训练。这里依然采用ControlNet架构,以保护并利用第一阶段学到的强大几何特征。

测试时集成:

推理策略:在最终检测时,模型不仅看输入的那一张图,还会在多个虚拟视角​ 上进行特征预测和集成。这相当于让模型"环视"这个物体,做出更准确的3D判断,充分释放了其3D感知能力的优势。

非常有趣的论文,很创新!

相关推荐
大江东去浪淘尽千古风流人物10 分钟前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
云飞云共享云桌面10 分钟前
高性能图形工作站的资源如何共享给10个SolidWorks研发设计用
linux·运维·服务器·前端·网络·数据库·人工智能
IT实战课堂小元酱16 分钟前
大数据深度学习|计算机毕设项目|计算机毕设答辩|flask露天矿爆破效果分析系统开发及应用
人工智能·python·flask
MSTcheng.35 分钟前
CANN ops-math:AI 硬件端高效数学运算的算子设计与工程化落地方法
人工智能·深度学习·cann
Dev7z40 分钟前
基于深度学习的肺部听诊音疾病智能诊断方法研究
人工智能·深度学习
一灰灰blog43 分钟前
Spring AI中的多轮对话艺术:让大模型主动提问获取明确需求
数据库·人工智能·spring
行者无疆_ty1 小时前
什么是Node.js,跟OpenCode/OpenClaw有什么关系?
人工智能·node.js·openclaw
AC赳赳老秦1 小时前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
工程师老罗1 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
xfddlm1 小时前
边缘计算_ubuntu环境下使用瑞芯微RK3576NPU推理LLM
人工智能·ubuntu·边缘计算