【CVPR】3D Object Detection with Geometry-Aware Diffusion Features

论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Xu_3DiffTection_3D_Object_Detection_with_Geometry-Aware_Diffusion_Features_CVPR_2024_paper.pdf

1、效果

其实验结果(如大幅超越Cube-RCNN)也验证了这套方法的有效性。

2、主要贡献

通过视图合成增强具有3D感知的预训练2D扩散模型;将这些特征应用于3D检测任务和目标领域;进一步提高检测性能。

3、摘要

3DIFFTECTION是一个"先赋予几何感知,再进行检测微调"​ 的两阶段框架。它巧妙地利用无需3D标注的图片(如视频帧)​ 来教会一个扩散模型"理解3D几何",然后将这个拥有了3D"大脑"的模型变成一个强大的3D目标检测器。

4、思路

4.1 ControlNet

展示的 "Geometric ControlNet with Epipolar warp Operator"​ 正是其第一阶段(几何调优)的核心技术实现

具体来说:

几何调优(对应图中的架构):

目标:不是为了生成漂亮的图片,而是为了让扩散模型的特征具备3D感知能力。

方法:在Stable Diffusion的编码器上,附加一个可训练的Geometric ControlNet(如图中橙色部分所示)。它接收一张条件图片​ 和目标相机位姿。

关键操作:通过极线扭曲算子,将条件图片的特征,根据两张图片之间的相机几何关系(极线几何),"扭曲"到目标视角。这个过程强制模型学习如何根据一张图推理另一视角下的场景内容,本质上是在学习3D结构。

优势:这个训练只需要有相机位姿的图片对(如视频帧),完全不需要3D框或点云标注,解决了数据标注瓶颈。

4.2 语义调优

目标:将已经具备3D感知能力的模型特征,适配到具体的3D目标检测任务上。

方法:在几何调优后的模型基础上,使用带有3D检测标注的目标数据集​ 进行进一步训练。这里依然采用ControlNet架构,以保护并利用第一阶段学到的强大几何特征。

测试时集成:

推理策略:在最终检测时,模型不仅看输入的那一张图,还会在多个虚拟视角​ 上进行特征预测和集成。这相当于让模型"环视"这个物体,做出更准确的3D判断,充分释放了其3D感知能力的优势。

非常有趣的论文,很创新!

相关推荐
人工智能AI技术6 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡6 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣6 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56786 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
CG_MAGIC6 小时前
Substance Painter 纹理烘焙:法线贴图与 AO 贴图制作指南
3d·贴图·substance painter·建模教程·渲云渲染
冰西瓜6006 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
檐下翻书1737 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416277 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented7 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie8 小时前
ADALog 日志异常检测
人工智能