线代第五章线性方程组第五节:矩阵的对角化

一、矩阵对角化的严格定义

1. 定义

设 A 为 n 阶方阵,若存在 可逆矩阵 P对角矩阵 Λ (主对角线元素为特征值,其余元素为 0),使得:

2. 核心本质

矩阵可对角化的本质是:A 能找到 n 个线性无关的特征向量(即 A 的特征向量能构成 n 维向量空间的一组基)

二、矩阵可对角化的充要条件(核心定理)

1. 充要条件 1(通用定理)

n 阶方阵 A 可对角化 当且仅当 A 有 n 个线性无关的特征向量。

证明(必要性 + 充分性)

2. 充要条件 2(重特征值判定)

n 阶方阵 A 可对角化 当且仅当 对 A 的每个 k 重特征值 λ0​,其对应的特征子空间维数 (即 "特征值的重数 = 特征子空间维数",也称 "特征值半单")。

通俗理解

每个重特征值都能 "贡献" 与其重数相等的线性无关特征向量,最终所有特征向量总数为 n。

3. 充分条件(常用判定)

若 n 阶方阵 A 有 n 个 互不相同的特征值,则 A 必可对角化。

推导

由 "不同特征值的特征向量线性无关" 可知,若 A 有 n 个互不相同的特征值,则对应 n 个线性无关的特征向量,满足充要条件 1,故可对角化。

4. 特殊矩阵的对角化性质

  • 实对称矩阵 :必可对角化,且存在 正交矩阵 ,使得(正交对角化)。原因:实对称矩阵的特征值全为实数,且不同特征值的特征向量正交,重特征值的特征子空间维数 = 重数。

三、矩阵对角化的求解步骤(通用流程)

以 n 阶方阵 A 为例,步骤如下:

四、示例(含可对角化与不可对角化情况)

示例 1:可对角化(3 阶矩阵,含重特征值)

相关推荐
_OP_CHEN3 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
芷栀夏4 小时前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
种时光的人13 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_17 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙1 天前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗1 天前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
劈星斩月1 天前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央1 天前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~1 天前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_1 天前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构