线代第五章线性方程组第五节:矩阵的对角化

一、矩阵对角化的严格定义

1. 定义

设 A 为 n 阶方阵,若存在 可逆矩阵 P对角矩阵 Λ (主对角线元素为特征值,其余元素为 0),使得:

2. 核心本质

矩阵可对角化的本质是:A 能找到 n 个线性无关的特征向量(即 A 的特征向量能构成 n 维向量空间的一组基)

二、矩阵可对角化的充要条件(核心定理)

1. 充要条件 1(通用定理)

n 阶方阵 A 可对角化 当且仅当 A 有 n 个线性无关的特征向量。

证明(必要性 + 充分性)

2. 充要条件 2(重特征值判定)

n 阶方阵 A 可对角化 当且仅当 对 A 的每个 k 重特征值 λ0​,其对应的特征子空间维数 (即 "特征值的重数 = 特征子空间维数",也称 "特征值半单")。

通俗理解

每个重特征值都能 "贡献" 与其重数相等的线性无关特征向量,最终所有特征向量总数为 n。

3. 充分条件(常用判定)

若 n 阶方阵 A 有 n 个 互不相同的特征值,则 A 必可对角化。

推导

由 "不同特征值的特征向量线性无关" 可知,若 A 有 n 个互不相同的特征值,则对应 n 个线性无关的特征向量,满足充要条件 1,故可对角化。

4. 特殊矩阵的对角化性质

  • 实对称矩阵 :必可对角化,且存在 正交矩阵 ,使得(正交对角化)。原因:实对称矩阵的特征值全为实数,且不同特征值的特征向量正交,重特征值的特征子空间维数 = 重数。

三、矩阵对角化的求解步骤(通用流程)

以 n 阶方阵 A 为例,步骤如下:

四、示例(含可对角化与不可对角化情况)

示例 1:可对角化(3 阶矩阵,含重特征值)

相关推荐
知识在于积累4 小时前
在指定条件下获取布尔矩阵中的索引矩阵
矩阵·索引·布尔矩阵
wa的一声哭了7 小时前
矩阵分析 方阵幂级数与方阵函数
人工智能·python·线性代数·算法·自然语言处理·矩阵·django
wa的一声哭了7 小时前
矩阵分析 单元函数矩阵微积分和多元向量值的导数
linux·c语言·c++·线性代数·算法·矩阵·云计算
老歌老听老掉牙7 小时前
SymPy 中矩阵乘法的顺序与元素类型分析
python·矩阵·sympy
POLITE38 小时前
Leetcode 54.螺旋矩阵 JavaScript (Day 8)
javascript·leetcode·矩阵
鲨莎分不晴8 小时前
从“像素对”到“纹理感”:深度解析灰度共生矩阵 (GLCM)
线性代数·矩阵
轻微的风格艾丝凡9 小时前
模型拆解--Variable Inductance Modeling
线性代数·simulink
雾喔11 小时前
1970. 你能穿过矩阵的最后一天 + 今年总结
线性代数·算法·矩阵
AI科技星21 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活