SelfAttenion自注意力机制

my-attention

考虑别的token对当前token的语义影响

第一种情况, 维度缩减

输入x= [4x6]

dk=3

wq = [6x3]

wk = [6x3]

wv = [6x3]

q = x@ wq = [4x6]*[6x3] = [4x3]

k = x@ wk = [4x6]*[6x3] = [4x3]

r=q@k.T = [4x3]*[3x4]=[4x4]

缩放

r = r/sqrt(dk)=[4x4]

a = softmax®=[4x4]

v = x@ wv = [4x6]*[6x3] = [4x3]

out = a@v = [4x4] * [4x3] = [4x3]

第二种情况, 维度不缩减

输入x= [4x6]

输出维度为6

dk=6

随机生成qkv

wq = [6x6]

wk = [6x6]

wv = [6x6]

q = x@ wq = [4x6]*[6x6] = [4x6]

k = x@ wk = [4x6]*[6x6] = [4x6]

r=q@k.T = [4x6]*[6x4]=[4x4]

缩放

r = r/sqrt(dk)=[4x4]

归一化

a = softmax®=[4x4]

原始值增加权重

v = x@ wv = [4x6]*[6x6] = [4x6]

out = a@v = [4x4] * [4x6] = [4x6]

保证输出结果的维度和要求要一致

下面是用代码实现了一下自注意力机制

复制代码
import math

import torch
from torch import nn

x = torch.randn(16, 64, 512)

d_model = 512
h_num = 8


class Self_Attention(nn.Module):
    def __init__(self, d_model, h_num):
        # 调用父类构造函数
        super(Self_Attention, self).__init__()

        self.d_model = d_model
        self.h_num = h_num
        self.softmax = nn.Softmax(dim=-1)
        self.w_q = nn.Linear(d_model, d_model)
        self.w_k = nn.Linear(d_model, d_model)
        self.w_v = nn.Linear(d_model, d_model)
        self.w_o = nn.Linear(d_model, d_model)

    def forward(self, x):
        B, L, D = x.shape

        h_d = self.d_model // self.h_num

        q, k, v = self.w_q(x), self.w_k(x), self.w_v(x)
        q = q.view(B, L, self.h_num, h_d).transpose(1, 2)
        k = k.view(B, L, self.h_num, h_d).transpose(1, 2)
        v = v.view(B, L, self.h_num, h_d).transpose(1, 2)

        r = q @ k.transpose(2, 3) / math.sqrt(h_d)

        mask = torch.tril(torch.ones(L, L, dtype=bool))

        r = r.masked_fill(~mask, -10000) 

        a = self.softmax(r)

        o = a @ v
        o = o.transpose(1, 2).contiguous().view(B, L, self.d_model)

        return self.w_o(o)


attention = Self_Attention(d_model, h_num)
y = attention(x)
print(y.shape)
print(y)
相关推荐
kszlgy30 分钟前
Day 52 神经网络调参指南
python
wrj的博客2 小时前
python环境安装
python·学习·环境配置
Pyeako2 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
摘星编程3 小时前
OpenHarmony环境下React Native:Geolocation地理围栏
python
充值修改昵称4 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
q_35488851535 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
Yeats_Liao5 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
被星1砸昏头6 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
却道天凉_好个秋6 小时前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测