【上海晶珩睿莓 1 单板计算机】物联网环境监测终端

【上海晶珩睿莓 1 单板计算机】物联网环境监测终端

本文介绍了睿莓 1 单板计算机结合 AHT20 和 BMP280 传感器模块实现实现环境温湿度和气压监测,并通过 MQTT 协议上传至 Home Assistant 智能家居平台,实现物联网环境监测的项目设计。

项目介绍

  • 准备工作:硬件连接、软件包安装、Docker 部署、EMQX 和 HomeAssistant平台部署;
  • 工程测试:加载官方 Demo 例程,实现传感器数据终端打印;
  • MQTT:结合 MQTT 协议,实现传感器数据上传至 EMQX 服务器平台,并远程读取;
  • Home Assistant:通过 MQTT 集成,实现传感器数据卡片自动获取,实现物联网环境气体监测。

准备工作

包括硬件连接、软件包安装、Home Assistant 平台搭建等。

硬件连接

将 AHT20 和 BMP280 传感器模块连接至端口 /dev/i2c-1

AHT20 & BMP280 睿莓1 Note
SDA SDA (3) Serial Data
SCL SCL (5) Serial Clock
GND GND (6) Ground
VCC 3.3V (1) Power

实物图

40-Pin 接口定义

IIC 软件包

终端执行指令

bash 复制代码
sudo apt install python3-smbus2 python3-smbus python3-paho-mqtt

物联网平台

通过 Docker 搭建本地物联网平台。

Docker

电脑主机安装 Docker 软件;

bash 复制代码
sudo apt-get update && sudo apt-get upgrade
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
docker version

拉取 EMQX 和 Home Assistant 最新镜像;

bash 复制代码
sudo docker pull emqx/emqx:latest
sudo docker pull homeassistant/home-assistant:latest

启动 EMQX 和 HA 容器;

bash 复制代码
docker run -d --name emqx -p 1883:1883 -p 8083:8083 -p 8084:8084 -p 8883:8883 -p 18083:18083 emqx/emqx:latest

docker run -d --restart always --name homeassistant -v /data/homeassistant/config:/config -e TZ=Asia/Shanghai -p 8123:8123 homeassistant/home-assistant:latest
MQTT 客户端

EMQX 创建 MQTT 客户端

  • 进入 EMQX 主页,如 http://192.168.31.116:18083

  • 依次打开 访问控制 - 客户端认证 - 创建 - Password-Based - 内置数据库 - (默认配置)- 创建

创建用户

  • 用户管理 - 新建用户 - 自定义用户名和密码 - 保存.
HA 配置
  • 浏览器输入网址 http://<IP>:8123,如 192.168.1.107:8123
  • 进入 HA 主界面(首次打开需进行注册),输入用户名、密码等信息;
  • 配置完成后进入 HA 概览 标签页;

工程测试

包括 AHT10和BMP280模块IIC通信测试、SEN66模块驱动测试等。

AHT10 & BMP280

终端执行指令 touch aht20_bmp280_print.py 新建程序文件并添加如下代码

python 复制代码
from aht10 import AHT10
from bmp280 import BMP280
import time

while True:
    sensor = AHT10(bus=0, address=0x38)
    temp, hum = sensor.read()
    bmp280 = BMP280(bus=0, address=0x77)
    temperature, pressure = bmp280.get_temperature_and_pressure()
    print("Temperature: {:.2f} °C  Humidity: {:.2f} %RH  Pressure: {:.3f} kPa".format(temp, hum, pressure/1000))
    time.sleep(2)
AHT10 驱动
python 复制代码
"""
AHT10温湿度传感器驱动
"""

import smbus2
import time

class AHT10:
    def __init__(self, bus=1, address=0x38):
        self.bus = smbus2.SMBus(bus)
        self.addr = address
        self._initialize()
        time.sleep(0.5)  # 延长初始化等待时间

    def _initialize(self):
        """初始化AHT10,发送0xE10800命令"""
        try:
            self.bus.write_i2c_block_data(self.addr, 0xE1, [0x08, 0x00])
            return True
        except:
            return False

    def read(self):
        """读取一次温湿度测量"""
        # 触发测量 0xAC3300
        self.bus.write_i2c_block_data(self.addr, 0xAC, [0x33, 0x00])
        time.sleep(0.08)  # 等待测量完成

        # 读取6字节数据
        data = self.bus.read_i2c_block_data(self.addr, 0x00, 6)

        # 解析数据
        hum_raw = ((data[1] << 12) | (data[2] << 4) | (data[3] >> 4))
        temp_raw = (((data[3] & 0x0F) << 16) | (data[4] << 8) | data[5])

        humidity = hum_raw * 100 / (1 << 20)  # 2^20 = 1048576
        temperature = temp_raw * 200 / (1 << 20) - 50

        return round(temperature, 1), round(humidity, 1)

# 使用示例
def demo(interval=1):
    """连续打印温湿度,interval:采样间隔(秒)"""
    sensor = AHT10(bus=0, address=0x38)
    while True:
        temp, hum = sensor.read()
        print(f"Temperature: {temp}°C, Humidity: {hum}%RH")
        time.sleep(interval)
BMP280 驱动
python 复制代码
import time
import smbus

# BMP280 iic address.
BMP280_I2C_ADDRESS = 0x77        # SDO = 0

# Registers value
BMP280_ID_Value = 0x58           # BMP280 ID
BMP280_RESET_VALUE = 0xB6

# BMP280 Registers definition
BMP280_TEMP_XLSB_REG = 0xFC      # Temperature XLSB Register
BMP280_TEMP_LSB_REG = 0xFB       # Temperature LSB Register
BMP280_TEMP_MSB_REG = 0xFA       # Temperature LSB Register
BMP280_PRESS_XLSB_REG = 0xF9     # Pressure XLSB  Register
BMP280_PRESS_LSB_REG = 0xF8      # Pressure LSB Register
BMP280_PRESS_MSB_REG = 0xF7      # Pressure MSB Register
BMP280_CONFIG_REG = 0xF5         # Configuration Register
BMP280_CTRL_MEAS_REG = 0xF4      # Ctrl Measure Register
BMP280_STATUS_REG = 0xF3         # Status Register
BMP280_RESET_REG = 0xE0          # Softreset Register
BMP280_ID_REG = 0xD0             # Chip ID Register

# calibration parameters
BMP280_DIG_T1_LSB_REG = 0x88
BMP280_DIG_T1_MSB_REG = 0x89
BMP280_DIG_T2_LSB_REG = 0x8A
BMP280_DIG_T2_MSB_REG = 0x8B
BMP280_DIG_T3_LSB_REG = 0x8C
BMP280_DIG_T3_MSB_REG = 0x8D
BMP280_DIG_P1_LSB_REG = 0x8E
BMP280_DIG_P1_MSB_REG = 0x8F
BMP280_DIG_P2_LSB_REG = 0x90
BMP280_DIG_P2_MSB_REG = 0x91
BMP280_DIG_P3_LSB_REG = 0x92
BMP280_DIG_P3_MSB_REG = 0x93
BMP280_DIG_P4_LSB_REG = 0x94
BMP280_DIG_P4_MSB_REG = 0x95
BMP280_DIG_P5_LSB_REG = 0x96
BMP280_DIG_P5_MSB_REG = 0x97
BMP280_DIG_P6_LSB_REG = 0x98
BMP280_DIG_P6_MSB_REG = 0x99
BMP280_DIG_P7_LSB_REG = 0x9A
BMP280_DIG_P7_MSB_REG = 0x9B
BMP280_DIG_P8_LSB_REG = 0x9C
BMP280_DIG_P8_MSB_REG = 0x9D
BMP280_DIG_P9_LSB_REG = 0x9E
BMP280_DIG_P9_MSB_REG = 0x9F


class BMP280(object):
    def __init__(self, bus=1, address=BMP280_I2C_ADDRESS):
        self._address = address
        self._bus = smbus.SMBus(bus)    # 1: iic编号为1(根据自己的硬件接口选择对应的编号)
        # Load calibration values.
        if self._read_byte(BMP280_ID_REG) == BMP280_ID_Value: # read bmp280 id
            self._load_calibration()                          # load calibration data
            # BMP280_T_MODE_1 << 5 | BMP280_P_MODE_1 << 2 | BMP280_SLEEP_MODE;
            # 修复:使用正常的测量模式而不是 0xFF(0xFF 会使传感器进入强制模式但可能不稳定)
            # 0x27 表示:温度过采样x1,压力过采样x1,正常模式
            ctrlmeas = 0x27
            # BMP280_T_SB1 << 5 | BMP280_FILTER_MODE_1 << 2;
            config = 0x14
            self._write_byte(BMP280_CTRL_MEAS_REG, ctrlmeas)  # write bmp280 config
            # sets the data acquisition options
            self._write_byte(BMP280_CONFIG_REG, config)
            # 等待传感器稳定
            time.sleep(0.01)
        else:
            print("Read BMP280 id error!\r\n")

    def _read_byte(self, cmd):
        return self._bus.read_byte_data(self._address, cmd)

    def _read_u16(self, cmd):
        LSB = self._bus.read_byte_data(self._address, cmd)
        MSB = self._bus.read_byte_data(self._address, cmd+1)
        return (MSB << 8) + LSB

    def _read_s16(self, cmd):
        result = self._read_u16(cmd)
        if result > 32767:
            result -= 65536
        return result

    def _write_byte(self, cmd, val):
        self._bus.write_byte_data(self._address, cmd, val)

    def _load_calibration(self):                           # load calibration data
        "load calibration"

        """ read the temperature calibration parameters """
        self.dig_T1 = self._read_u16(BMP280_DIG_T1_LSB_REG)
        self.dig_T2 = self._read_s16(BMP280_DIG_T2_LSB_REG)
        self.dig_T3 = self._read_s16(BMP280_DIG_T3_LSB_REG)
        """ read the pressure calibration parameters """
        self.dig_P1 = self._read_u16(BMP280_DIG_P1_LSB_REG)
        self.dig_P2 = self._read_s16(BMP280_DIG_P2_LSB_REG)
        self.dig_P3 = self._read_s16(BMP280_DIG_P3_LSB_REG)
        self.dig_P4 = self._read_s16(BMP280_DIG_P4_LSB_REG)
        self.dig_P5 = self._read_s16(BMP280_DIG_P5_LSB_REG)
        self.dig_P6 = self._read_s16(BMP280_DIG_P6_LSB_REG)
        self.dig_P7 = self._read_s16(BMP280_DIG_P7_LSB_REG)
        self.dig_P8 = self._read_s16(BMP280_DIG_P8_LSB_REG)
        self.dig_P9 = self._read_s16(BMP280_DIG_P9_LSB_REG)

        # print(self.dig_T1)
        # print(self.dig_T2)
        # print(self.dig_T3)
        # print(self.dig_P1)
        # print(self.dig_P2)
        # print(self.dig_P3)
        # print(self.dig_P4)
        # print(self.dig_P5)
        # print(self.dig_P6)
        # print(self.dig_P7)
        # print(self.dig_P8)
        # print(self.dig_P9)

    def compensate_temperature(self, adc_T):
        """Returns temperature in DegC, double precision. Output value of "1.23"equals 51.23 DegC."""
        var1 = ((adc_T) / 16384.0 - (self.dig_T1) / 1024.0) * (self.dig_T2)
        var2 = (((adc_T) / 131072.0 - (self.dig_T1) / 8192.0) *
                ((adc_T) / 131072.0 - (self.dig_T1) / 8192.0)) * (self.dig_T3)
        self.t_fine = var1 + var2
        temperature = (var1 + var2) / 5120.0
        return temperature

    def compensate_pressure(self, adc_P):
        """Returns pressure in Pa as double. Output value of "6386.2"equals 96386.2 Pa = 963.862 hPa."""
        var1 = (self.t_fine / 2.0) - 64000.0
        var2 = var1 * var1 * (self.dig_P6) / 32768.0
        var2 = var2 + var1 * (self.dig_P5) * 2.0
        var2 = (var2 / 4.0) + ((self.dig_P4) * 65536.0)
        var1 = ((self.dig_P3) * var1 * var1 / 524288.0 +
                (self.dig_P2) * var1) / 524288.0
        var1 = (1.0 + var1 / 32768.0) * (self.dig_P1)

        if var1 == 0.0:
            return 0  # avoid exception caused by division by zero

        pressure = 1048576.0 - adc_P
        pressure = (pressure - (var2 / 4096.0)) * 6250.0 / var1
        var1 = (self.dig_P9) * pressure * pressure / 2147483648.0
        var2 = pressure * (self.dig_P8) / 32768.0
        pressure = pressure + (var1 + var2 + (self.dig_P7)) / 16.0

        return pressure

    def get_temperature_and_pressure(self):
        """Returns pressure in Pa as double. Output value of "6386.2"equals 96386.2 Pa = 963.862 hPa."""
        xlsb = self._read_byte(BMP280_TEMP_XLSB_REG)
        lsb = self._read_byte(BMP280_TEMP_LSB_REG)
        msb = self._read_byte(BMP280_TEMP_MSB_REG)

        adc_T = (msb << 12) | (lsb << 4) | (
            xlsb >> 4)      # temperature registers data
        temperature = self.compensate_temperature(
            adc_T)    # temperature compensate

        xlsb = self._read_byte(BMP280_PRESS_XLSB_REG)
        lsb = self._read_byte(BMP280_PRESS_LSB_REG)
        msb = self._read_byte(BMP280_PRESS_MSB_REG)

        adc_P = (msb << 12) | (lsb << 4) | (
            xlsb >> 4)      # pressure registers data
        pressure = self.compensate_pressure(
            adc_P)          # pressure compensate
        return temperature, pressure

def demo(interval=1):
    """连续打印温度压强,interval:采样间隔(秒)"""
    bmp280 = BMP280(bus=4, address=0x77)
    while True:
        time.sleep(1)
        temperature, pressure = bmp280.get_temperature_and_pressure()
        print('Temperature = %.2f C Pressure = %.3f kPa' %
              (temperature, pressure/1000))
效果
  • 终端执行指令 python3 aht20_bmp280_print.py 运行程序;

  • 连续打印温湿度和气压数据;

MQTT

通过 MQTT 协议实现传感器数据上传,并使用 EMQX 的 WebSocket 工具接收 JSON 报文。

流程图

异常
Ctrl-C
开始
加载环境
扫描IIC设备
初始化传感器
启动连续测量
连接MQTT
发布HA配置
主循环
读取3个参量
提取数据
封装JSON

发布
打印日志
停止测量

断开MQTT
退出

代码

python 复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
温湿度 + 气压 → MQTT → Home Assistant
传感器:AHT10 + BMP280(I²C 总线 0)
"""

import json
import time
from aht10 import AHT10
from bmp280 import BMP280
import paho.mqtt.client as mqtt

# =============== 参数 ==============
MQTT_BROKER = "192.168.1.107"   # EMQX IP
MQTT_PORT   = 1883
MQTT_USER   = "xxx"
MQTT_PASS   = "xxx"
NODE_ID     = "bosch"          # 设备节点 ID
IIC_BUS     = 0                # i2c bus 0
# ===================================

# HA 自动发现主题模板
DISCOVERY_PREFIX = "homeassistant"

# 传感器配置
SENSORS = {
    "temp": {"name": "Temperature", "unit": "°C",   "dev_cla": "temperature", "ic": "mdi:thermometer"},
    "hum":  {"name": "Humidity", "unit": "%",    "dev_cla": "humidity",    "ic": "mdi:water-percent"},
    "pres": {"name": "Pressure", "unit": "hPa",  "dev_cla": "pressure",    "ic": "mdi:gauge"},
}

def publish_discovery(client):
    """向 HA 发送自动发现配置,只需一次即可"""
    for key, cfg in SENSORS.items():
        topic = f"{DISCOVERY_PREFIX}/sensor/{NODE_ID}/{key}/config"
        payload = {
            "name": cfg["name"],
            "unit_of_measurement": cfg["unit"],
            "device_class": cfg["dev_cla"],
            "icon": cfg["ic"],
            "state_topic": f"{DISCOVERY_PREFIX}/sensor/{NODE_ID}/{key}/state",
            "unique_id": f"{NODE_ID}_{key}",
            "device": {
                "identifiers": [NODE_ID],
                "name": "Sensors",
                "model": "AHT20_BMP280",
                "manufacturer": "Bosch",
            },
        }
        client.publish(topic, json.dumps(payload), retain=True)

def main():
    client = mqtt.Client()
    client.username_pw_set(MQTT_USER, MQTT_PASS)
    client.connect(MQTT_BROKER, MQTT_PORT, 60)
    client.loop_start()

    # 上电后先发送一次发现配置
    publish_discovery(client)

    # 传感器初始化
    aht  = AHT10(bus=IIC_BUS, address=0x38)
    bmp  = BMP280(bus=IIC_BUS, address=0x77)

    while True:
        try:
            temp, hum   = aht.read()
            _, pressure = bmp.get_temperature_and_pressure()  # 温度 AHT10 采集
            pressure_hpa = pressure * 10                      # kPa → hPa
            print(f"Temp: {temp:.2f} °C  Hum: {hum:.2f} %  Pres: {pressure_hpa:.2f} hPa")

            client.publish(f"{DISCOVERY_PREFIX}/sensor/{NODE_ID}/temp/state", f"{temp:.2f}")
            client.publish(f"{DISCOVERY_PREFIX}/sensor/{NODE_ID}/hum/state",  f"{hum:.2f}")
            client.publish(f"{DISCOVERY_PREFIX}/sensor/{NODE_ID}/pres/state", f"{pressure_hpa:.2f}")
        except Exception as e:
            print("读取/发送失败:", e)
        time.sleep(2)  # 2 s 上报一次

if __name__ == "__main__":
    main()

保存代码。

测试

  • 终端执行 python aht20_bmp280_mqtt.py 运行程序;

  • 打印 JSON 格式报文;

EMQX 测试
  • 进入 EMQX 网页控制界面,打开侧边标签栏,选择 诊断工具 - WebSocket 客户端
  • 输入用户名和密码,连接 MQTT 服务器;
  • 在订阅版块输入目标传感器主题,如 homeassistant/sensor/bosch/temp/state ,点击 订阅 按钮;
  • 在已接收版块可看到传感器数据,两秒更新一次;

Home Assistant

通过 MQTT 协议上传 SEN66 传感器数据至 Home Assistant 平台,实现远程 IoT 数据实时监测。

参数配置

打开 Home Assistant 网页界面 http://192.168.31.118:8123 ,在 设置 - 设备与服务 标签页添加 MQTT 集成;

  • 输入 EMQX 客户端信息,刷新页面,可看到新增的传感器;
  • 点击 SEN66 传感器,进入详情页面,获取设备信息;
  • 点击编辑按钮,配置所在区域等信息,并添加至仪表盘;

效果

进入 概览 页面,刷新网页,可获得实时传感器数据

  • 点击目标传感器,可获得历史数据及演化曲线

总结

本文介绍了睿莓 1 单板计算机结合 AHT20 和 BMP280 传感器模块实现环境温湿度及气压监测,并通过 MQTT 协议上传至 Home Assistant 智能家居平台,实现物联网环境监测终端的项目设计,为相关产品在物联网领域的快速开发和应用设计提供了参考。

相关推荐
Dovis(誓平步青云)2 小时前
《拆解Linux中的IP协议与数据链路层:地址、路由与分片的底层逻辑》
linux·网络·tcp/ip
Feibo20112 小时前
R制作研究报告
python
axinawang2 小时前
浙江省高中信息技术(Python)--进阶刷题(选修)
python·浙江省高中信息技术
qq_447429412 小时前
Gemini CLI 非交互模式工具调用机制详解
linux·运维·服务器
专业开发者2 小时前
施泰纳尔公司如何借助蓝牙 Mesh 网络节约能源成本,并将照明系统升级为智能物联网核心中枢
网络·物联网
先知后行。2 小时前
ModBus协议
嵌入式硬件
代码游侠2 小时前
复习——SQLite3 数据库
linux·服务器·数据库·笔记·网络协议·sqlite
赵长辉4 小时前
AGI-rag学习:ChromaDB使用1,txt类型文档【20251016课复习】
python·学习·llm·agi
chenyuhao20244 小时前
Linux网络编程:传输层协议UDP
linux·服务器·网络·后端·udp