Building a Containerised Backend with Docker Compose

Overview

In this exercise, I built a fully containerised backend system using Docker Compose.

The system consists of a Python API and a MySQL database, running in separate containers but working together as a single application.

The goal was to understand how services are connected, started, and verified in a containerised environment.


Step 1: Build a Simple Python API

I first created a minimal Python API that supports:

  • Adding a product (POST)

  • Fetching all products (GET)

Example API routes:

复制代码
@app.route("/products", methods=["POST"])
def add_product():
    ...

@app.route("/products", methods=["GET"])
def get_products():
    ...

This API is responsible only for handling HTTP requests and database operations.


Step 2: Containerise the API with Dockerfile

Next, I containerised the API using a Dockerfile.

复制代码
FROM python:3.10-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY app.py .
CMD ["python", "app.py"]

This defines:

  • The runtime environment

  • The dependencies

  • How the API starts inside a container


Step 3: Prepare Database Initialisation

I created an SQL script that automatically runs when the database container starts for the first time.

复制代码
CREATE TABLE products (
  id INT AUTO_INCREMENT PRIMARY KEY,
  name VARCHAR(100),
  quantity INT
);

This ensures the database schema is ready without manual setup.


Step 4: Orchestrate Services with Docker Compose

Using Docker Compose, I defined and connected the API and database services.

Docker Compose automatically:

  • Creates a shared network

  • Allows services to communicate using service names

  • Manages startup order


Step 5: Handle Startup Timing Issues

During startup, the API initially failed because the database was not ready.

I solved this by adding a retry mechanism in the API so it waits until the database becomes available.

复制代码
def get_db_connection():
    while True:
        try:
            return mysql.connector.connect(...)
        except:
            time.sleep(3)

This made the system stable and resilient during startup.


Step 6: Verify the System

Finally, I verified the system by sending HTTP requests directly from the command line.

复制代码
curl -X POST http://localhost:5000/products \
  -H "Content-Type: application/json" \
  -d '{"name":"Apple","quantity":10}'

curl http://localhost:5000/products

Both data insertion and retrieval worked as expected.


Final Outcome

I successfully built and ran a fully containerised backend system ,

where a Python API and MySQL database communicate through Docker Compose,

and verified that the system works end-to-end.

相关推荐
86Eric19 小时前
Vagrant 镜像打包与新环境部署全流程实操(避坑指南)
运维·vagrant·virtualbox·vagrantfile
广然20 小时前
EVE-NG 镜像管理工具 1.1 Web 版本正式发布!
运维·服务器·前端
祁鱼鱼鱼鱼鱼20 小时前
DNS 笔记记录
运维·服务器·网络
tod11320 小时前
Makefile进阶(上)
linux·运维·服务器·windows·makefile·进程
阳光九叶草LXGZXJ20 小时前
达梦数据库-学习-50-分区表指定分区清理空洞率(交换分区方式)
linux·运维·数据库·sql·学习
zbliquan20 小时前
SS928v100远程ubuntu交叉编译开发环境搭建
linux·运维·ubuntu
豆是浪个20 小时前
Linux(Centos 7.6)命令详解:top
linux·运维·服务器
杨浦老苏21 小时前
Docker方式安装你的私人AI电脑助手Moltbot
人工智能·docker·ai·群晖
x70x8021 小时前
# Docker 搭建 MySQL 8 主从复制(踩坑实录 + 完整验证)
mysql·docker·容器
qq_3168377521 小时前
docker 运行 cn_clip
运维·docker·容器