感知机与向量

感知机与向量

by\mathscr{by}by AmamiyaFuko\mathfrak{AmamiyaFuko}AmamiyaFuko

笑容挂在了嘴角上,话语爬进了咽喉里

感知机

感知机是一种分类机器,虽然一般而言认为它是仿生的,非线性的,不过也有一个线性的简单版本,这个线性的感知机更加简单。

线性的感知机是通过欧几里德范数实现的,也就是向量的点积,向量的点积总的来说会有两个结果,正的,或者是负的,这也是线性感知机的分类原理,正的归于一类,负的归于一类。

下面来说说这个感知机是如何迭代的,当然,首先要说说它的形式。

设有一函数ϕ(x)\phi(x)ϕ(x),若 x为正,它输出 1,反之输出 -1,很简单。

再设有一个权重向量 ωˇ\v{\omega}ωˇ,和一个输入向量xˇ\v{x}xˇ,这个xˇ\v{x}xˇ就是一个需要被分类的点。

然后还有一个偏置 b,这是个常数。

那么线性感知机的形式就是

ϕ(ωˇTxˇ+b)\phi(\v{\omega}^{T}\v{x} + b)ϕ(ωˇTxˇ+b)

当然,这个感知机是否线性取决于ϕ\phiϕ,如果它是线性的,那么感知机就是线性的,一般来说我们管我们现在用的这个叫越阶函数,它没法微分,这就是为什么我们在训练神经网络的时候不使用它,虽然它很简单。

然后它迭代的方式是,如果机器的结果是错误的,就将权重向量和输入向量加起来作为新的权重向量,这样我们最终就可以得到一个正确的权重向量,反之就不变。

这就是为什么,它的决策边界是线性的,一个超空间。当然实践上我们会把偏值加到权重向量里,然后在输入向量加入一个常数项,这就可以实现和形式一样的效果,而且可以正确迭代。

相关推荐
小韩博14 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
u01092727115 小时前
C++中的策略模式变体
开发语言·c++·算法
2501_9418372615 小时前
停车场车辆检测与识别系统-YOLOv26算法改进与应用分析
算法·yolo
沃达德软件15 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车15 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经15 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
六义义16 小时前
java基础十二
java·数据结构·算法
四维碎片16 小时前
QSettings + INI 笔记
笔记·qt·算法
Tansmjs16 小时前
C++与GPU计算(CUDA)
开发语言·c++·算法
梁下轻语的秋缘16 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt