VAE(变分自编码器 Variational Auto-Encoder)学习笔记

图片生成任务

一张图片上像素的所有可能值决定了一张图片的分布空间,假设我们进行的是人脸生成任务,那整个人脸片只占整个空间的很小一部分,并且这个分布十分难表示。

隐变量

当我们在人脸图像中改变很小一些像素,整个图片看起来还是人脸,这就表明人脸图片的分布其实有一定的容错率,那么我们可以只保留更加粗糙的特征,任然能表示一张人脸。由此我们引入隐变量:

VAE当中使用的就是128维的隐变量。

AE(Auto - Encoder)

传统的AE方法就是找到这个隐变量,但是在生成问题中面临一个问题,就是随机选取一个隐变量可能只会生成出噪声。因为由图片生成的隐向量在整个分布空间中是稀疏的。

VAE

所以我们采用两种方法:

  • 图片不输出一个隐向量,而输出一个正太分布
  • 使所有输出的正态分布的叠加尽可能的接近一个正太分布。

上图中我们分别维编码器,隐空间和解码器设定了数学表达

输出从隐向量变为正态分布的两个参数

反向传播

上述训练的网络中有一步是不可导的,就是随机采样的哪个步骤。

因此,我们通过下面这个步骤使其可导

loss函数

包括两部分:图片重建loss和Kl散度loss(用于约束为正太分布)

优化目标

公式推导

这部分推导类似于DDPM

分别对两部分进行推导

注意到−d2log⁡(2π)-\frac{d}{2}\log(2\pi)−2dlog(2π)抵消。

然后再分开求这三项

带回式子后:

这样就得到了KL三度的计算方法。

相关推荐
m0_736034859 小时前
1.28笔记
前端·chrome·笔记
丝斯20119 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
了一梨10 小时前
SQLite3学习笔记4:打开和关闭数据库 + 创建表(C API)
数据库·学习·sqlite
阿蒙Amon15 小时前
TypeScript学习-第1章:入门
javascript·学习·typescript
奥特曼_ it17 小时前
【数据分析+机器学习】基于机器学习的招聘数据分析可视化预测推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
笔记·数据挖掘·数据分析
A9better17 小时前
嵌入式开发学习日志50——任务调度与状态
stm32·嵌入式硬件·学习
四维碎片18 小时前
QSettings + INI 笔记
笔记·qt·算法
非凡ghost18 小时前
ESET NupDown Tools 数据库下载工具
学习·软件需求
zzcufo18 小时前
多邻国第5阶段17-18学习笔记
笔记·学习
BlackWolfSky19 小时前
鸿蒙中级课程笔记4—应用程序框架进阶1—Stage模型应用组成结构、UIAbility启动模式、启动应用内UIAbility
笔记·华为·harmonyos