langchain1.x学习笔记(三):langchain之init_chat_model的新用法

在langchain1.x中,使用init_chat_model函数进行构建model。

1. 第一种方式:支持硅基流动的调用
python 复制代码
from envs.envs import OPENAI_BASE_URL, OPENAI_BASE_MODEL, OPENAI_API_KEY
from langchain.chat_models import init_chat_model

model = init_chat_model(
    model_provider="openai",
    model=OPENAI_BASE_MODEL,
    api_key=OPENAI_API_KEY,
    base_url=OPENAI_BASE_URL,
    temperature=0,
)

response = model.invoke(input="hello")

print(response)
2. 第二种方式:后配置
python 复制代码
from envs.envs import OPENAI_BASE_URL, OPENAI_BASE_MODEL, OPENAI_API_KEY
from langchain.chat_models import init_chat_model

model = init_chat_model(
    temperature=0,
)

response = model.invoke(
    input="hello",
    config={
        "model_provider": "openai",
        "model": OPENAI_BASE_MODEL,
        "api_key": OPENAI_API_KEY,
        "base_url": OPENAI_BASE_URL,
        "max_tokens": 4096,
    },
)

print(response)
3. 第三种:流式输出
python 复制代码
from envs.envs import OPENAI_BASE_URL, OPENAI_BASE_MODEL, OPENAI_API_KEY
from langchain.chat_models import init_chat_model

model = init_chat_model(
    temperature=0,
)

stream = model.stream(
    input="hello",
    config={
        "model_provider": "openai",
        "model": OPENAI_BASE_MODEL,
        "api_key": OPENAI_API_KEY,
        "base_url": OPENAI_BASE_URL,
        "max_tokens": 4096,
    },
)

for chunk in stream:
    print(chunk.content, end="", flush=True)
4. 第四种:异步流式输出
python 复制代码
from envs.envs import OPENAI_BASE_URL, OPENAI_BASE_MODEL, OPENAI_API_KEY
from langchain.chat_models import init_chat_model
import asyncio


async def async_stream():
    model = init_chat_model(
        temperature=0,
    )

    stream = model.astream(
        input="hello",
        config={
            "model_provider": "openai",
            "model": OPENAI_BASE_MODEL,
            "api_key": OPENAI_API_KEY,
            "base_url": OPENAI_BASE_URL,
            "max_tokens": 4096,
        },
    )

    async for chunk in stream:
        print(chunk.content, end="", flush=True)


if __name__ == "__main__":
    asyncio.run(async_stream())
5. 提示词模板结合管道进行使用
python 复制代码
from envs.envs import OPENAI_BASE_URL, OPENAI_BASE_MODEL, OPENAI_API_KEY
from langchain.chat_models import init_chat_model
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser


prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant."),
        ("human", "{question}"),
    ]
)

model = init_chat_model(
    model_provider="openai",
    model=OPENAI_BASE_MODEL,
    api_key=OPENAI_API_KEY,
    base_url=OPENAI_BASE_URL,
)


chain = prompt | model | StrOutputParser()


result = chain.invoke({"question": "你是谁?"})

print(result)
相关推荐
玄同7657 小时前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑7 小时前
用RedisVL构建长期记忆
人工智能
J_Xiong01177 小时前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper7 小时前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd7 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
CoderJia程序员甲8 小时前
GitHub 热榜项目 - 日榜(2026-02-06)
人工智能·ai·大模型·github·ai教程
wukangjupingbb8 小时前
AI多模态技术在创新药研发中的结合路径、机制及挑战
人工智能
火车叼位8 小时前
也许你不需要创建.venv, 此规范使python脚本自备依赖
python
CoderIsArt8 小时前
三大主流智能体框架解析
人工智能
火车叼位8 小时前
脚本伪装:让 Python 与 Node.js 像原生 Shell 命令一样运行
运维·javascript·python