pytorch vs ray

PyTorch 和 Ray 处于技术栈中完全不同的层级,它们解决的问题不同,通常是互补关系,而不是竞争关系。

  1. 核心区别:造车 vs. 调度车队
    PyTorch (专注于模型与计算):

角色:它像是一台高性能的引擎。

核心任务:解决"数学问题"。如何构建神经网络、如何自动求导、如何利用 GPU 加速矩阵运算。

适用场景:编写模型算法、训练单个模型。

Ray (专注于分布式与调度):

角色:它像是一个集群调度中心。

核心任务:解决"基础设施问题"。如何把 Python 代码分发到 100 台机器上跑、如果某台机器挂了怎么办、如何高效传输数据。

适用场景:大规模超参数搜索(Ray Tune)、强化学习(RLlib)、分布式数据处理。

  1. PyTorch 是集中式的吗?

不完全是,但它是"紧耦合"的。

单机模式:是的,PyTorch 是集中式的。您的 Python 脚本就是唯一的指挥官,控制所有计算。

分布式模式 (DDP):当 PyTorch 进行多卡/多机训练时,它是去中心化的同步系统 (SPMD)。

同步:它要求所有 GPU 必须"步调一致"。如果有一个 GPU 慢了,其他所有 GPU 都要停下来等它(AllReduce 梯度同步)。

这也是为什么 PyTorch 即使在分布式时,给人的感觉也像是在写一个单机程序。

总结

PyTorch 负责让单个计算任务(比如一次前向传播)跑得极快。

Ray 负责指挥成千上万个计算任务在集群中高效流转。

实际用法:通常会用 Ray 来管理集群,然后在 Ray 的每个 Worker 节点里调用 PyTorch 来进行具体的计算。

相关推荐
知乎的哥廷根数学学派2 小时前
基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
开发语言·网络·人工智能·pytorch·python·算法·机器学习
Yuer20252 小时前
低熵回答倾向:语言模型中的一种系统稳定态
人工智能·机器学习·语言模型·ai安全·edca os
七夜zippoe2 小时前
缓存策略:从本地到分布式架构设计与Python实战
分布式·python·缓存·lfu·lru
曲幽2 小时前
重构FastAPI生产部署:用异步网关与无服务器计算应对高并发
python·serverless·fastapi·web·async·httpx·await·asyncio
yuzhiboyouye2 小时前
c/p比结合VIX值,最早的信号
人工智能
Byron Loong2 小时前
【机器视觉】GTX5050到GTX5090算力比较
人工智能
郝学胜-神的一滴2 小时前
《机器学习》经典教材全景解读:周志华教授匠心之作的技术深探
数据结构·人工智能·python·程序人生·机器学习·sklearn
知乎的哥廷根数学学派2 小时前
基于物理约束与多源知识融合的浅基础极限承载力智能预测与工程决策优化(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
yubo05092 小时前
【无标题】
人工智能·深度学习