sklearn中fit、transform、fit_transform用法详解

1. 基本概念

这三个方法是 scikit-learn 转换器(Transformer)的核心方法:

fit() - 学习数据的参数(如均值、标准差等)

transform() - 应用学到的参数转换数据

fit_transform() - 一次性完成学习和转换

2. 详细解释

fit() - 训练/学习阶段

bash 复制代码
# 只学习参数,不转换数据
scaler.fit(X_train)

计算并存储数据的统计信息(如均值、方差等)

不返回转换后的数据,只返回转换器对象本身

通常用于训练集

transform() - 转换阶段

bash 复制代码
# 使用已学习的参数转换数据
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)  # 对测试集用相同的参数

应用之前 fit() 学到的参数

返回转换后的数据

可用于训练集和测试集

fit_transform() - 训练+转换

bash 复制代码
# 一次性完成学习和转换
X_train_scaled = scaler.fit_transform(X_train)

相当于先调用 fit() 再调用 transform()

只返回转换后的数据(不返回转换器)

仅用于训练集

3. 实际示例

示例1:标准化 (StandardScaler)

bash 复制代码
from sklearn.preprocessing import StandardScaler
import numpy as np

# 创建数据
X_train = np.array([[1, 2], [3, 4], [5, 6]])
X_test = np.array([[7, 8], [9, 10]])

# 创建标准化器
scaler = StandardScaler()

# 正确用法
scaler.fit(X_train)  # 只在训练集上学习参数
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)  # 测试集用相同参数

# 或者用快捷方式
X_train_scaled = scaler.fit_transform(X_train)  # 训练集
X_test_scaled = scaler.transform(X_test)        # 测试集

print("训练集标准化后:")
print(X_train_scaled)
print("\n测试集标准化后:")
print(X_test_scaled)

示例2:PCA降维

bash 复制代码
from sklearn.decomposition import PCA

# 创建PCA对象,保留2个主成分
pca = PCA(n_components=2)

# 在训练集上学习主成分
X_train_pca = pca.fit_transform(X_train)  # 相当于 fit() + transform()

# 在测试集上应用相同的主成分
X_test_pca = pca.transform(X_test)  # 只用 transform()

print(f"解释方差比例: {pca.explained_variance_ratio_}")

4. 重要注意事项

绝对不能这样用!

bash 复制代码
# ❌ 错误:测试集上调用 fit_transform()
X_test_scaled = scaler.fit_transform(X_test)  # 错误!

# ❌ 错误:训练集只transform不fit
X_train_scaled = scaler.transform(X_train)  # 报错:没有先fit

为什么测试集只用 transform()?

保证训练集和测试集使用相同的转换规则

防止数据泄露(Data Leakage)

确保模型评估的准确性

5. 流程总结

bash 复制代码
# 训练阶段(训练集)
X_train_transformed = transformer.fit_transform(X_train)

# 测试/预测阶段(测试集/新数据)
X_test_transformed = transformer.transform(X_test)

# 如果有新数据需要预测
new_data_transformed = transformer.transform(new_data)

记忆技巧

fit = 学习规则(只在训练集做一次)

transform = 应用规则(训练集、测试集都要做)

fit_transform = fit + transform(训练集的快捷方式)

记住这个原则:训练集可以了解数据,测试集只能应用从训练集学到的规则。

相关推荐
张彦峰ZYF2 小时前
多模态大模型、混合专家模型与云端协同架构
人工智能·计算机视觉·多模态大模型·混合专家架构·大小模型协同架构
丝斯20112 小时前
AI学习笔记整理(43)——NLP之大规模预训练模型BERT
人工智能·学习·自然语言处理
yong99902 小时前
信号分形维数计算方法与MATLAB实现
开发语言·人工智能·matlab
数据大魔方2 小时前
【期货量化入门】股指期货量化入门:IF/IC/IH交易全攻略(TqSdk完整教程)
开发语言·python
爱吃大芒果2 小时前
openJiuwen(Windows端)大模型添加及AI Agent创建教程
人工智能·ubuntu·openjiuwen
工藤学编程2 小时前
零基础学AI大模型之个人助理智能体之tool_calling_agent实战
人工智能·langchain
WZgold1412 小时前
黄金再创新高!2026 年金价走势预测
大数据·人工智能·经验分享·区块链
雷焰财经2 小时前
生成式AI走进金融核心系统——效率革命还是风险放大器?
人工智能