[Vulkan 学习之路] 20 - 顶点缓冲区:创建顶点缓冲区 (Vertex Buffer Creation)

欢迎来到第 20 篇!这是 Vulkan 教程中非常"硬核"的一章。

虽然我们在上一章定义了顶点数据,但那些数据还躺在 CPU 的内存里(std::vector 中)。显卡(GPU)是一块独立的硬件,它有自己的显存。显卡无法直接读取你 C++ 程序里的 vector

我们需要手动做三件事:

  1. 在显存中申请一块地盘(Buffer)。

  2. 把 CPU 里的顶点数据拷贝过去。

  3. 把这块显存"喂"给显卡去画。

这一章涉及了 Vulkan 的内存管理,代码量虽然不多,但概念非常底层。

上一章我们修改了 Shader 和 Pipeline,让它们"虚位以待",准备接收顶点数据。这一章,我们就要把真正的 vertices 数据发送给 GPU。

在 Vulkan 中,这需要创建一个 Vertex Buffer (顶点缓冲区)

添加成员变量

我们需要两个新的句柄:一个代表缓冲区对象本身 (VkBuffer),一个代表缓冲区背后的显存 (VkDeviceMemory)。

HelloTriangleApplication 类的 private 成员变量区域添加:

cpp 复制代码
    VkBuffer vertexBuffer;
    VkDeviceMemory vertexBufferMemory;

寻找合适的内存类型 (findMemoryType)

这是 Vulkan 内存管理中最麻烦的一步。显卡有不同类型的内存(有的显存读写快但 CPU 访问不到,有的 CPU 能写但显卡读得慢)。

我们需要写一个辅助函数,来寻找一种**既能满足缓冲区需求,又能被 CPU 访问(Host Visible)**的内存类型。

将此函数添加到类中(通常作为 private 辅助函数):

cpp 复制代码
    uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
        VkPhysicalDeviceMemoryProperties memProperties;
        vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

        for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
            // 1. typeFilter: 检查该内存类型是否支持我们 Buffer 的需求
            // 2. properties: 检查该内存类型是否支持我们需要的属性 (比如 CPU 可写)
            if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
                return i;
            }
        }

        throw std::runtime_error("failed to find suitable memory type!");
    }

创建顶点缓冲区 (createVertexBuffer)

现在我们可以编写核心函数 createVertexBuffer 了。这个函数执行以下步骤:

  1. 创建 Buffer 对象:告诉 Vulkan 我们要多大空间,用来干嘛。

  2. 分配内存:根据 Buffer 的要求,申请真正的物理显存。

  3. 绑定内存:把 Buffer 对象和申请到的显存绑在一起。

  4. 填充数据 :把 CPU 的 vertices 数据拷贝进去。

cpp 复制代码
    void createVertexBuffer() {
        VkBufferCreateInfo bufferInfo{};
        bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
        // 计算需要的字节大小
        bufferInfo.size = sizeof(vertices[0]) * vertices.size();
        // 用途:作为顶点缓冲区使用
        bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
        // 共享模式:只被图形队列使用,所以独占
        bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

        if (vkCreateBuffer(device, &bufferInfo, nullptr, &vertexBuffer) != VK_SUCCESS) {
            throw std::runtime_error("failed to create vertex buffer!");
        }

        // 获取 Buffer 的内存需求 (对齐要求等)
        VkMemoryRequirements memRequirements;
        vkGetBufferMemoryRequirements(device, vertexBuffer, &memRequirements);

        // 分配内存
        VkMemoryAllocateInfo allocInfo{};
        allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
        allocInfo.allocationSize = memRequirements.size;
        // 关键:我们需要 HOST_VISIBLE (CPU能看见) 和 HOST_COHERENT (CPU写入后GPU立即可见,不需要手动Flush)
        allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);

        if (vkAllocateMemory(device, &allocInfo, nullptr, &vertexBufferMemory) != VK_SUCCESS) {
            throw std::runtime_error("failed to allocate vertex buffer memory!");
        }

        // 绑定 Buffer 和 Memory
        vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory, 0);

        // --- 填充数据 (Map -> Copy -> Unmap) ---
        void* data;
        // Map: 获取显存地址指针
        vkMapMemory(device, vertexBufferMemory, 0, bufferInfo.size, 0, &data);
        // Copy: 像操作普通内存一样拷贝数据
        memcpy(data, vertices.data(), (size_t)bufferInfo.size);
        // Unmap: 释放映射
        vkUnmapMemory(device, vertexBufferMemory);
    }

修改初始化流程 (initVulkan)

createVertexBuffer 添加到 initVulkan 中。它应该在 createCommandBuffers 之前调用。

cpp 复制代码
    void initVulkan() {
        // ... 前面的代码 ...
        createFramebuffers();
        createCommandPool();
        createVertexBuffer(); // <--- 新增在这里
        createCommandBuffers();
        createSyncObjects();
    }

修改录制命令 (recordCommandBuffer)

现在 Buffer 已经准备好了,我们需要告诉显卡:"画图之前,先把这个 Buffer 绑上去"。

修改 recordCommandBuffer 函数,在 vkCmdDraw 之前添加绑定命令:

cpp 复制代码
    void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
        // ... (前面的 BeginRenderPass 和 BindPipeline 代码保持不变) ...

        vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

        // === 新增:绑定顶点缓冲区 ===
        VkBuffer vertexBuffers[] = {vertexBuffer};
        VkDeviceSize offsets[] = {0};
        // 绑定到 binding 0 (对应 Vertex 结构体里的 bindingDescription.binding = 0)
        vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);

        // ... (Viewport 和 Scissor 设置保持不变) ...

        // === 修改:绘制命令 ===
        // 现在我们可以画 vertices.size() 个顶点了,不再硬编码为 3
        vkCmdDraw(commandBuffer, static_cast<uint32_t>(vertices.size()), 1, 0, 0);

        // ... (EndRenderPass 代码保持不变) ...
    }

清理资源 (cleanup)

Buffer 和 DeviceMemory 都需要手动销毁。请在 cleanup 函数中添加清理代码(建议在销毁 CommandPool 之前):

cpp 复制代码
    void cleanup() {
        cleanupSwapChain();

        // ... 销毁 Framebuffer 之后,销毁 CommandPool 之前 ...
        
        // 销毁顶点缓冲区和内存
        vkDestroyBuffer(device, vertexBuffer, nullptr);
        vkFreeMemory(device, vertexBufferMemory, nullptr);

        // ...
    }

完整代码:

C++:

cpp 复制代码
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

#include <glm/glm.hpp>

#include <iostream>
#include <fstream>
#include <stdexcept>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <cstdint>
#include <limits>
#include <array>
#include <optional>
#include <set>

const uint32_t WIDTH = 800;
const uint32_t HEIGHT = 600;

const int MAX_FRAMES_IN_FLIGHT = 3;

const std::vector<const char*> validationLayers = {
    "VK_LAYER_KHRONOS_validation"
};

const std::vector<const char*> deviceExtensions = {
    VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
    auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
    if (func != nullptr) {
        return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
    }
    else {
        return VK_ERROR_EXTENSION_NOT_PRESENT;
    }
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
    auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
    if (func != nullptr) {
        func(instance, debugMessenger, pAllocator);
    }
}

struct QueueFamilyIndices {
    std::optional<uint32_t> graphicsFamily;
    std::optional<uint32_t> presentFamily;

    bool isComplete() {
        return graphicsFamily.has_value() && presentFamily.has_value();
    }
};

struct SwapChainSupportDetails {
    VkSurfaceCapabilitiesKHR capabilities;
    std::vector<VkSurfaceFormatKHR> formats;
    std::vector<VkPresentModeKHR> presentModes;
};

struct Vertex {
    glm::vec2 pos;
    glm::vec3 color;

    static VkVertexInputBindingDescription getBindingDescription() {
        VkVertexInputBindingDescription bindingDescription{};
        bindingDescription.binding = 0;
        bindingDescription.stride = sizeof(Vertex);
        bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

        return bindingDescription;
    }

    static std::array<VkVertexInputAttributeDescription, 2> getAttributeDescriptions() {
        std::array<VkVertexInputAttributeDescription, 2> attributeDescriptions{};

        attributeDescriptions[0].binding = 0;
        attributeDescriptions[0].location = 0;
        attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT;
        attributeDescriptions[0].offset = offsetof(Vertex, pos);

        attributeDescriptions[1].binding = 0;
        attributeDescriptions[1].location = 1;
        attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
        attributeDescriptions[1].offset = offsetof(Vertex, color);

        return attributeDescriptions;
    }
};

const std::vector<Vertex> vertices = {
    {{0.0f, -0.5f}, {1.0f, 0.0f, 0.0f}},
    {{0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}},
    {{-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}
};

class HelloTriangleApplication {
public:
    void run() {
        initWindow();
        initVulkan();
        mainLoop();
        cleanup();
    }

private:
    GLFWwindow* window;

    VkInstance instance;
    VkDebugUtilsMessengerEXT debugMessenger;
    VkSurfaceKHR surface;

    VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
    VkDevice device;

    VkQueue graphicsQueue;
    VkQueue presentQueue;

    VkSwapchainKHR swapChain;
    std::vector<VkImage> swapChainImages;
    VkFormat swapChainImageFormat;
    VkExtent2D swapChainExtent;
    std::vector<VkImageView> swapChainImageViews;
    std::vector<VkFramebuffer> swapChainFramebuffers;

    VkRenderPass renderPass;
    VkPipelineLayout pipelineLayout;
    VkPipeline graphicsPipeline;

    VkCommandPool commandPool;

    VkBuffer vertexBuffer;
    VkDeviceMemory vertexBufferMemory;

    std::vector<VkCommandBuffer> commandBuffers;

    std::vector<VkSemaphore> imageAvailableSemaphores;
    std::vector<VkSemaphore> renderFinishedSemaphores;
    std::vector<VkFence> inFlightFences;
    uint32_t currentFrame = 0;

    bool framebufferResized = false;

    void initWindow() {
        glfwInit();

        glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);

        window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
        glfwSetWindowUserPointer(window, this);
        glfwSetFramebufferSizeCallback(window, framebufferResizeCallback);
    }

    static void framebufferResizeCallback(GLFWwindow* window, int width, int height) {
        auto app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindowUserPointer(window));
        app->framebufferResized = true;
    }

    void initVulkan() {
        createInstance();
        setupDebugMessenger();
        createSurface();
        pickPhysicalDevice();
        createLogicalDevice();
        createSwapChain();
        createImageViews();
        createRenderPass();
        createGraphicsPipeline();
        createFramebuffers();
        createCommandPool();
        createVertexBuffer();
        createCommandBuffers();
        createSyncObjects();
    }

    void mainLoop() {
        while (!glfwWindowShouldClose(window)) {
            glfwPollEvents();
            drawFrame();
        }

        vkDeviceWaitIdle(device);
    }

    void cleanupSwapChain() {
        for (auto framebuffer : swapChainFramebuffers) {
            vkDestroyFramebuffer(device, framebuffer, nullptr);
        }

        for (auto imageView : swapChainImageViews) {
            vkDestroyImageView(device, imageView, nullptr);
        }

        vkDestroySwapchainKHR(device, swapChain, nullptr);
    }

    void cleanup() {
        cleanupSwapChain();

        vkDestroyPipeline(device, graphicsPipeline, nullptr);
        vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
        vkDestroyRenderPass(device, renderPass, nullptr);

        vkDestroyBuffer(device, vertexBuffer, nullptr);
        vkFreeMemory(device, vertexBufferMemory, nullptr);

        for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
            vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
            vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
            vkDestroyFence(device, inFlightFences[i], nullptr);
        }

        vkDestroyCommandPool(device, commandPool, nullptr);

        vkDestroyDevice(device, nullptr);

        if (enableValidationLayers) {
            DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
        }

        vkDestroySurfaceKHR(instance, surface, nullptr);
        vkDestroyInstance(instance, nullptr);

        glfwDestroyWindow(window);

        glfwTerminate();
    }

    void recreateSwapChain() {
        int width = 0, height = 0;
        glfwGetFramebufferSize(window, &width, &height);
        while (width == 0 || height == 0) {
            glfwGetFramebufferSize(window, &width, &height);
            glfwWaitEvents();
        }

        vkDeviceWaitIdle(device);

        cleanupSwapChain();

        createSwapChain();
        createImageViews();
        createFramebuffers();
    }

    void createInstance() {
        if (enableValidationLayers && !checkValidationLayerSupport()) {
            throw std::runtime_error("validation layers requested, but not available!");
        }

        VkApplicationInfo appInfo{};
        appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
        appInfo.pApplicationName = "Hello Triangle";
        appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.pEngineName = "No Engine";
        appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.apiVersion = VK_API_VERSION_1_0;

        VkInstanceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
        createInfo.pApplicationInfo = &appInfo;

        auto extensions = getRequiredExtensions();
        createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
        createInfo.ppEnabledExtensionNames = extensions.data();

        VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();

            populateDebugMessengerCreateInfo(debugCreateInfo);
            createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*)&debugCreateInfo;
        }
        else {
            createInfo.enabledLayerCount = 0;

            createInfo.pNext = nullptr;
        }

        if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
            throw std::runtime_error("failed to create instance!");
        }
    }

    void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
        createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
        createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
        createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
        createInfo.pfnUserCallback = debugCallback;
    }

    void setupDebugMessenger() {
        if (!enableValidationLayers) return;

        VkDebugUtilsMessengerCreateInfoEXT createInfo;
        populateDebugMessengerCreateInfo(createInfo);

        if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
            throw std::runtime_error("failed to set up debug messenger!");
        }
    }

    void createSurface() {
        if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
            throw std::runtime_error("failed to create window surface!");
        }
    }

    void pickPhysicalDevice() {
        uint32_t deviceCount = 0;
        vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

        if (deviceCount == 0) {
            throw std::runtime_error("failed to find GPUs with Vulkan support!");
        }

        std::vector<VkPhysicalDevice> devices(deviceCount);
        vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

        for (const auto& device : devices) {
            if (isDeviceSuitable(device)) {
                physicalDevice = device;
                break;
            }
        }

        if (physicalDevice == VK_NULL_HANDLE) {
            throw std::runtime_error("failed to find a suitable GPU!");
        }
    }

    void createLogicalDevice() {
        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

        std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
        std::set<uint32_t> uniqueQueueFamilies = { indices.graphicsFamily.value(), indices.presentFamily.value() };

        float queuePriority = 1.0f;
        for (uint32_t queueFamily : uniqueQueueFamilies) {
            VkDeviceQueueCreateInfo queueCreateInfo{};
            queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
            queueCreateInfo.queueFamilyIndex = queueFamily;
            queueCreateInfo.queueCount = 1;
            queueCreateInfo.pQueuePriorities = &queuePriority;
            queueCreateInfos.push_back(queueCreateInfo);
        }

        VkPhysicalDeviceFeatures deviceFeatures{};

        VkDeviceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

        createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
        createInfo.pQueueCreateInfos = queueCreateInfos.data();

        createInfo.pEnabledFeatures = &deviceFeatures;

        createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
        createInfo.ppEnabledExtensionNames = deviceExtensions.data();

        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();
        }
        else {
            createInfo.enabledLayerCount = 0;
        }

        if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
            throw std::runtime_error("failed to create logical device!");
        }

        vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
        vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
    }

    void createSwapChain() {
        SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

        VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
        VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
        VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

        uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
        if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
            imageCount = swapChainSupport.capabilities.maxImageCount;
        }

        VkSwapchainCreateInfoKHR createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
        createInfo.surface = surface;

        createInfo.minImageCount = imageCount;
        createInfo.imageFormat = surfaceFormat.format;
        createInfo.imageColorSpace = surfaceFormat.colorSpace;
        createInfo.imageExtent = extent;
        createInfo.imageArrayLayers = 1;
        createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
        uint32_t queueFamilyIndices[] = { indices.graphicsFamily.value(), indices.presentFamily.value() };

        if (indices.graphicsFamily != indices.presentFamily) {
            createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
            createInfo.queueFamilyIndexCount = 2;
            createInfo.pQueueFamilyIndices = queueFamilyIndices;
        }
        else {
            createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
        }

        createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
        createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
        createInfo.presentMode = presentMode;
        createInfo.clipped = VK_TRUE;

        if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
            throw std::runtime_error("failed to create swap chain!");
        }

        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
        swapChainImages.resize(imageCount);
        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());

        swapChainImageFormat = surfaceFormat.format;
        swapChainExtent = extent;
    }

    void createImageViews() {
        swapChainImageViews.resize(swapChainImages.size());

        for (size_t i = 0; i < swapChainImages.size(); i++) {
            VkImageViewCreateInfo createInfo{};
            createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
            createInfo.image = swapChainImages[i];
            createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
            createInfo.format = swapChainImageFormat;
            createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
            createInfo.subresourceRange.baseMipLevel = 0;
            createInfo.subresourceRange.levelCount = 1;
            createInfo.subresourceRange.baseArrayLayer = 0;
            createInfo.subresourceRange.layerCount = 1;

            if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create image views!");
            }
        }
    }

    void createRenderPass() {
        VkAttachmentDescription colorAttachment{};
        colorAttachment.format = swapChainImageFormat;
        colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
        colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
        colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
        colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
        colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
        colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
        colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

        VkAttachmentReference colorAttachmentRef{};
        colorAttachmentRef.attachment = 0;
        colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

        VkSubpassDescription subpass{};
        subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
        subpass.colorAttachmentCount = 1;
        subpass.pColorAttachments = &colorAttachmentRef;

        VkSubpassDependency dependency{};
        dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
        dependency.dstSubpass = 0;
        dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
        dependency.srcAccessMask = 0;
        dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
        dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;

        VkRenderPassCreateInfo renderPassInfo{};
        renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
        renderPassInfo.attachmentCount = 1;
        renderPassInfo.pAttachments = &colorAttachment;
        renderPassInfo.subpassCount = 1;
        renderPassInfo.pSubpasses = &subpass;
        renderPassInfo.dependencyCount = 1;
        renderPassInfo.pDependencies = &dependency;

        if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
            throw std::runtime_error("failed to create render pass!");
        }
    }

    void createGraphicsPipeline() {
        auto vertShaderCode = readFile("shaders/vert.spv");
        auto fragShaderCode = readFile("shaders/frag.spv");

        VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
        VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

        VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
        vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
        vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
        vertShaderStageInfo.module = vertShaderModule;
        vertShaderStageInfo.pName = "main";

        VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
        fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
        fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
        fragShaderStageInfo.module = fragShaderModule;
        fragShaderStageInfo.pName = "main";

        VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo };

        VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
        vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

        auto bindingDescription = Vertex::getBindingDescription();
        auto attributeDescriptions = Vertex::getAttributeDescriptions();

        vertexInputInfo.vertexBindingDescriptionCount = 1;
        vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
        vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
        vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();

        VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
        inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
        inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
        inputAssembly.primitiveRestartEnable = VK_FALSE;

        VkPipelineViewportStateCreateInfo viewportState{};
        viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
        viewportState.viewportCount = 1;
        viewportState.scissorCount = 1;

        VkPipelineRasterizationStateCreateInfo rasterizer{};
        rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
        rasterizer.depthClampEnable = VK_FALSE;
        rasterizer.rasterizerDiscardEnable = VK_FALSE;
        rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
        rasterizer.lineWidth = 1.0f;
        rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
        rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
        rasterizer.depthBiasEnable = VK_FALSE;

        VkPipelineMultisampleStateCreateInfo multisampling{};
        multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
        multisampling.sampleShadingEnable = VK_FALSE;
        multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;

        VkPipelineColorBlendAttachmentState colorBlendAttachment{};
        colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
        colorBlendAttachment.blendEnable = VK_FALSE;

        VkPipelineColorBlendStateCreateInfo colorBlending{};
        colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
        colorBlending.logicOpEnable = VK_FALSE;
        colorBlending.logicOp = VK_LOGIC_OP_COPY;
        colorBlending.attachmentCount = 1;
        colorBlending.pAttachments = &colorBlendAttachment;
        colorBlending.blendConstants[0] = 0.0f;
        colorBlending.blendConstants[1] = 0.0f;
        colorBlending.blendConstants[2] = 0.0f;
        colorBlending.blendConstants[3] = 0.0f;

        std::vector<VkDynamicState> dynamicStates = {
            VK_DYNAMIC_STATE_VIEWPORT,
            VK_DYNAMIC_STATE_SCISSOR
        };
        VkPipelineDynamicStateCreateInfo dynamicState{};
        dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
        dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
        dynamicState.pDynamicStates = dynamicStates.data();

        VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
        pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
        pipelineLayoutInfo.setLayoutCount = 0;
        pipelineLayoutInfo.pushConstantRangeCount = 0;

        if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
            throw std::runtime_error("failed to create pipeline layout!");
        }

        VkGraphicsPipelineCreateInfo pipelineInfo{};
        pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
        pipelineInfo.stageCount = 2;
        pipelineInfo.pStages = shaderStages;
        pipelineInfo.pVertexInputState = &vertexInputInfo;
        pipelineInfo.pInputAssemblyState = &inputAssembly;
        pipelineInfo.pViewportState = &viewportState;
        pipelineInfo.pRasterizationState = &rasterizer;
        pipelineInfo.pMultisampleState = &multisampling;
        pipelineInfo.pColorBlendState = &colorBlending;
        pipelineInfo.pDynamicState = &dynamicState;
        pipelineInfo.layout = pipelineLayout;
        pipelineInfo.renderPass = renderPass;
        pipelineInfo.subpass = 0;
        pipelineInfo.basePipelineHandle = VK_NULL_HANDLE;

        if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
            throw std::runtime_error("failed to create graphics pipeline!");
        }

        vkDestroyShaderModule(device, fragShaderModule, nullptr);
        vkDestroyShaderModule(device, vertShaderModule, nullptr);
    }

    void createFramebuffers() {
        swapChainFramebuffers.resize(swapChainImageViews.size());

        for (size_t i = 0; i < swapChainImageViews.size(); i++) {
            VkImageView attachments[] = {
                swapChainImageViews[i]
            };

            VkFramebufferCreateInfo framebufferInfo{};
            framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
            framebufferInfo.renderPass = renderPass;
            framebufferInfo.attachmentCount = 1;
            framebufferInfo.pAttachments = attachments;
            framebufferInfo.width = swapChainExtent.width;
            framebufferInfo.height = swapChainExtent.height;
            framebufferInfo.layers = 1;

            if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create framebuffer!");
            }
        }
    }

    void createCommandPool() {
        QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

        VkCommandPoolCreateInfo poolInfo{};
        poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
        poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
        poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();

        if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
            throw std::runtime_error("failed to create command pool!");
        }
    }

    void createVertexBuffer() {
        VkBufferCreateInfo bufferInfo{};
        bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
        bufferInfo.size = sizeof(vertices[0]) * vertices.size();
        bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
        bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

        if (vkCreateBuffer(device, &bufferInfo, nullptr, &vertexBuffer) != VK_SUCCESS) {
            throw std::runtime_error("failed to create vertex buffer!");
        }

        VkMemoryRequirements memRequirements;
        vkGetBufferMemoryRequirements(device, vertexBuffer, &memRequirements);

        VkMemoryAllocateInfo allocInfo{};
        allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
        allocInfo.allocationSize = memRequirements.size;
        allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);

        if (vkAllocateMemory(device, &allocInfo, nullptr, &vertexBufferMemory) != VK_SUCCESS) {
            throw std::runtime_error("failed to allocate vertex buffer memory!");
        }

        vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory, 0);

        void* data;
        vkMapMemory(device, vertexBufferMemory, 0, bufferInfo.size, 0, &data);
        memcpy(data, vertices.data(), (size_t)bufferInfo.size);
        vkUnmapMemory(device, vertexBufferMemory);
    }

    uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
        VkPhysicalDeviceMemoryProperties memProperties;
        vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

        for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
            if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
                return i;
            }
        }

        throw std::runtime_error("failed to find suitable memory type!");
    }

    void createCommandBuffers() {
        commandBuffers.resize(MAX_FRAMES_IN_FLIGHT);

        VkCommandBufferAllocateInfo allocInfo{};
        allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
        allocInfo.commandPool = commandPool;
        allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
        allocInfo.commandBufferCount = (uint32_t)commandBuffers.size();

        if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
            throw std::runtime_error("failed to allocate command buffers!");
        }
    }

    void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
        VkCommandBufferBeginInfo beginInfo{};
        beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;

        if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
            throw std::runtime_error("failed to begin recording command buffer!");
        }

        VkRenderPassBeginInfo renderPassInfo{};
        renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
        renderPassInfo.renderPass = renderPass;
        renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
        renderPassInfo.renderArea.offset = { 0, 0 };
        renderPassInfo.renderArea.extent = swapChainExtent;

        VkClearValue clearColor = { {{0.0f, 0.0f, 0.0f, 1.0f}} };
        renderPassInfo.clearValueCount = 1;
        renderPassInfo.pClearValues = &clearColor;

        vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

        vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

        VkViewport viewport{};
        viewport.x = 0.0f;
        viewport.y = 0.0f;
        viewport.width = (float)swapChainExtent.width;
        viewport.height = (float)swapChainExtent.height;
        viewport.minDepth = 0.0f;
        viewport.maxDepth = 1.0f;
        vkCmdSetViewport(commandBuffer, 0, 1, &viewport);

        VkRect2D scissor{};
        scissor.offset = { 0, 0 };
        scissor.extent = swapChainExtent;
        vkCmdSetScissor(commandBuffer, 0, 1, &scissor);

        VkBuffer vertexBuffers[] = { vertexBuffer };
        VkDeviceSize offsets[] = { 0 };
        vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);

        vkCmdDraw(commandBuffer, static_cast<uint32_t>(vertices.size()), 1, 0, 0);

        vkCmdEndRenderPass(commandBuffer);

        if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
            throw std::runtime_error("failed to record command buffer!");
        }
    }

    void createSyncObjects() {
        imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
        renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
        inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);

        VkSemaphoreCreateInfo semaphoreInfo{};
        semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

        VkFenceCreateInfo fenceInfo{};
        fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
        fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

        for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
            if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
                vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
                vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create synchronization objects for a frame!");
            }
        }
    }

    void drawFrame() {
        vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);

        uint32_t imageIndex;
        VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);

        if (result == VK_ERROR_OUT_OF_DATE_KHR) {
            recreateSwapChain();
            return;
        }
        else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
            throw std::runtime_error("failed to acquire swap chain image!");
        }

        vkResetFences(device, 1, &inFlightFences[currentFrame]);

        vkResetCommandBuffer(commandBuffers[currentFrame], /*VkCommandBufferResetFlagBits*/ 0);
        recordCommandBuffer(commandBuffers[currentFrame], imageIndex);

        VkSubmitInfo submitInfo{};
        submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

        VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] };
        VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
        submitInfo.waitSemaphoreCount = 1;
        submitInfo.pWaitSemaphores = waitSemaphores;
        submitInfo.pWaitDstStageMask = waitStages;

        submitInfo.commandBufferCount = 1;
        submitInfo.pCommandBuffers = &commandBuffers[currentFrame];

        VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] };
        submitInfo.signalSemaphoreCount = 1;
        submitInfo.pSignalSemaphores = signalSemaphores;

        if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
            throw std::runtime_error("failed to submit draw command buffer!");
        }

        VkPresentInfoKHR presentInfo{};
        presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

        presentInfo.waitSemaphoreCount = 1;
        presentInfo.pWaitSemaphores = signalSemaphores;

        VkSwapchainKHR swapChains[] = { swapChain };
        presentInfo.swapchainCount = 1;
        presentInfo.pSwapchains = swapChains;

        presentInfo.pImageIndices = &imageIndex;

        result = vkQueuePresentKHR(presentQueue, &presentInfo);

        if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || framebufferResized) {
            framebufferResized = false;
            recreateSwapChain();
        }
        else if (result != VK_SUCCESS) {
            throw std::runtime_error("failed to present swap chain image!");
        }

        currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
    }

    VkShaderModule createShaderModule(const std::vector<char>& code) {
        VkShaderModuleCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
        createInfo.codeSize = code.size();
        createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

        VkShaderModule shaderModule;
        if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
            throw std::runtime_error("failed to create shader module!");
        }

        return shaderModule;
    }

    VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
        for (const auto& availableFormat : availableFormats) {
            if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
                return availableFormat;
            }
        }

        return availableFormats[0];
    }

    VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
        for (const auto& availablePresentMode : availablePresentModes) {
            if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
                return availablePresentMode;
            }
        }

        return VK_PRESENT_MODE_FIFO_KHR;
    }

    VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
        if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
            return capabilities.currentExtent;
        }
        else {
            int width, height;
            glfwGetFramebufferSize(window, &width, &height);

            VkExtent2D actualExtent = {
                static_cast<uint32_t>(width),
                static_cast<uint32_t>(height)
            };

            actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
            actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);

            return actualExtent;
        }
    }

    SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
        SwapChainSupportDetails details;

        vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

        uint32_t formatCount;
        vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

        if (formatCount != 0) {
            details.formats.resize(formatCount);
            vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
        }

        uint32_t presentModeCount;
        vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);

        if (presentModeCount != 0) {
            details.presentModes.resize(presentModeCount);
            vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
        }

        return details;
    }

    bool isDeviceSuitable(VkPhysicalDevice device) {
        QueueFamilyIndices indices = findQueueFamilies(device);

        bool extensionsSupported = checkDeviceExtensionSupport(device);

        bool swapChainAdequate = false;
        if (extensionsSupported) {
            SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
            swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
        }

        return indices.isComplete() && extensionsSupported && swapChainAdequate;
    }

    bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
        uint32_t extensionCount;
        vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

        std::vector<VkExtensionProperties> availableExtensions(extensionCount);
        vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());

        std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

        for (const auto& extension : availableExtensions) {
            requiredExtensions.erase(extension.extensionName);
        }

        return requiredExtensions.empty();
    }

    QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
        QueueFamilyIndices indices;

        uint32_t queueFamilyCount = 0;
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

        std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

        int i = 0;
        for (const auto& queueFamily : queueFamilies) {
            if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                indices.graphicsFamily = i;
            }

            VkBool32 presentSupport = false;
            vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

            if (presentSupport) {
                indices.presentFamily = i;
            }

            if (indices.isComplete()) {
                break;
            }

            i++;
        }

        return indices;
    }

    std::vector<const char*> getRequiredExtensions() {
        uint32_t glfwExtensionCount = 0;
        const char** glfwExtensions;
        glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

        std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

        if (enableValidationLayers) {
            extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
        }

        return extensions;
    }

    bool checkValidationLayerSupport() {
        uint32_t layerCount;
        vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

        std::vector<VkLayerProperties> availableLayers(layerCount);
        vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

        for (const char* layerName : validationLayers) {
            bool layerFound = false;

            for (const auto& layerProperties : availableLayers) {
                if (strcmp(layerName, layerProperties.layerName) == 0) {
                    layerFound = true;
                    break;
                }
            }

            if (!layerFound) {
                return false;
            }
        }

        return true;
    }

    static std::vector<char> readFile(const std::string& filename) {
        std::ifstream file(filename, std::ios::ate | std::ios::binary);

        if (!file.is_open()) {
            throw std::runtime_error("failed to open file!");
        }

        size_t fileSize = (size_t)file.tellg();
        std::vector<char> buffer(fileSize);

        file.seekg(0);
        file.read(buffer.data(), fileSize);

        file.close();

        return buffer;
    }

    static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
        std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

        return VK_FALSE;
    }
};

int main() {
    HelloTriangleApplication app;

    try {
        app.run();
    }
    catch (const std::exception& e) {
        std::cerr << e.what() << std::endl;
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}

shader.vert:

cpp 复制代码
#version 450

layout(location = 0) in vec2 inPosition;
layout(location = 1) in vec3 inColor;

layout(location = 0) out vec3 fragColor;

void main() {
    gl_Position = vec4(inPosition, 0.0, 1.0);
    fragColor = inColor;
}

shader.frag:

cpp 复制代码
#version 450

layout(location = 0) in vec3 fragColor;

layout(location = 0) out vec4 outColor;

void main() {
    outColor = vec4(fragColor, 1.0);
}

总结

现在,你可以再次运行程序了。

你应该能看到和以前一模一样的三角形。但这次意义完全不同:这个三角形的数据不再是写死在 Shader 里的,而是真正通过 C++ 定义,申请显存,上传 GPU,并由管线读取出来的!

这意味着你可以通过修改 vertices 数组(例如加几个点,或者改变颜色),随意绘制任何形状,而不需要去改动和重新编译 Shader。

试着通过修改数组将顶点颜色改为白色:

cpp 复制代码
const std::vector<Vertex> vertices = {
    {{0.0f, -0.5f}, {1.0f, 1.0f, 1.0f}},
    {{0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}},
    {{-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}
};

下一步

目前的做法有一个性能隐患:我们使用的是 HOST_VISIBLE 内存。这种内存虽然 CPU 能写,但对于显卡来说读取速度并不是最快的(不是 DEVICE_LOCAL)。

在高性能场景下,我们通常会创建一个 Staging Buffer (暂存缓冲区) :先在 CPU 可见内存里创建暂存区,然后通过显卡内部的高速拷贝指令,把数据转移到显卡专用的高速显存 (DEVICE_LOCAL) 中。这是下一章的内容。

详见:Vertex buffer creation - Vulkan Tutorial

相关推荐
Knight_AL1 小时前
Spring Boot 中优雅地使用责任链模式(@Order 实战)
windows·spring boot·责任链模式
yi.Ist2 小时前
博弈论 Nim游戏
c++·学习·算法·游戏·博弈论
yuanmenghao2 小时前
车载Linux 系统问题定位方法论与实战系列 - 系统 reset / reboot 问题定位
linux·服务器·数据结构·c++·自动驾驶
楼田莉子2 小时前
C++高级数据结构——LRU Cache
数据结构·c++·后端·学习
DYS_房东的猫2 小时前
macOS 上 C++ 开发完整指南(2026 年版)
开发语言·c++·macos
啊吧怪不啊吧2 小时前
C++之模版详解(进阶)
大数据·开发语言·c++
小灰灰搞电子2 小时前
C++ 多线程详解
c++·多线程
牵牛老人2 小时前
Windows下安装Qt后再添加或移除Qt组件需要组件的有效资料档案库如何处理
开发语言·windows·qt
闻缺陷则喜何志丹2 小时前
P10160 [DTCPC 2024] Ultra|普及+
数据结构·c++··洛谷