基于 YOLO 的课堂手机使用行为智能检测系统实践

随着课堂管理信息化的发展,如何在不干扰教学的前提下,对学生课堂手机使用行为进行客观、实时的监测,成为一个具有现实意义的问题。本文介绍了一种基于 YOLO 轻量化目标检测模型 的课堂手机使用行为智能识别系统的设计与实现过程。

一、研究背景与目标

在真实课堂环境中,手机目标通常具有尺度小、遮挡多、光照变化大等特点,这对检测模型的精度与实时性提出了较高要求。本项目旨在:

  • 实现课堂场景下手机目标的实时检测与统计

  • 在保证高检测精度的同时,满足 CPU 实时推理

  • 提供可落地的软件系统,服务课堂管理与教学评估

二、技术路线与方法

1. 文献调研与模型选择

通过调研 2020--2025 年 CNKI 与 IEEE 上"课堂行为检测""YOLO 轻量化"等方向文献 30 余篇,从 mAP、模型参数量、CPU 推理速度 等角度进行对比分析,最终确定:

YOLOv5n + 知识蒸馏 作为整体技术路线

该方案在轻量化与精度之间取得了良好平衡。

2. 数据采集与增强策略
  • 数据来源:

    • 校内教室实拍

    • 公开数据集补充

  • 数据规模:

    • 共采集 8000 张手机图像

为缓解小目标与遮挡问题,采用了多种数据增强手段:

  • Mosaic 增强

  • HSV 颜色空间扰动

  • 随机遮挡(Random Occlusion)

整体数据量扩充至原始数据的 3 倍以上,显著提升模型泛化能力。

3. 模型训练与压缩优化

在统一实验环境下,对 YOLOv5n、YOLOv8n 和 Faster-RCNN 进行对比实验,固定超参数,最终选择:

  • YOLOv5n(mAP 最优且模型大小 ≤2 MB)

随后引入知识蒸馏策略:

  • Teacher:YOLOv5s

  • Student:YOLOv5n

蒸馏后模型 mAP 提升约 1.8%

在部署阶段,结合 OpenVINO INT8 量化 ,使 CPU 推理速度提升 2.3 倍 ,单帧推理时间稳定在 25 ms 以内

三、系统实现与工程设计

系统采用 PyQt5 + OpenCV 进行开发,整体架构遵循模块化思想:

  • 数据层

  • 模型层

  • 界面层

通过 Git 进行版本管理(提交次数 ≥25 次),并引入 pytest 测试框架,测试覆盖率达到 80% 以上,确保系统稳定运行、不闪退。

四、功能与性能表现

系统主要功能包括:

  • 图片检测:支持 JPG / PNG / BMP 拖拽检测

  • 视频回放检测:支持 1080p / 30 fps 本地视频

  • 实时检测:USB 摄像头 ≥25 fps

  • 目标计数:实时显示单帧手机数量与累计使用次数

  • 结果导出:自动生成 Excel 报表(时间 + 截图 + 置信度)

在自建测试集上的性能指标如下:

  • mAP@0.5 ≥ 95%

  • 召回率 ≥ 93%

  • 误检率 ≤ 3%

  • CPU(i7-12700H)推理速度 ≥ 40 fps

在白天、夜晚、逆光、遮挡等多种课堂环境下,mAP 下降控制在 2% 以内,表现出良好的鲁棒性。

五、总结与展望

本文从数据构建、模型轻量化、工程实现三个层面,完整实现了一套可落地的课堂手机使用行为检测系统。实践表明,YOLO 轻量化模型结合知识蒸馏与 INT8 量化,在 CPU 场景下依然具备较高应用价值。

后续工作可进一步探索:

  • 多行为联合识别(低头、睡觉等)

  • 跨教室、跨设备泛化能力

  • 隐私保护与边缘端部署优化

相关推荐
weixin_395448912 分钟前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo
哈__5 小时前
CANN加速3D目标检测推理:点云处理与特征金字塔优化
目标检测·3d·目标跟踪
王锋(oxwangfeng)5 小时前
YOLOWorld 实现开集障碍物检测
yolo
喵叔哟6 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
2501_9413331021 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
xsc-xyc1 天前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
张3蜂1 天前
我希望做的是识别身份证正反面,我需要标注多少张图片?
yolo
AAD555888991 天前
YOLOv8-MAN-Faster电容器缺陷检测:七类组件识别与分类系统
yolo·分类·数据挖掘
AI浩1 天前
YOLO-IOD:面向实时增量目标检测
yolo·目标检测·目标跟踪
Katecat996631 天前
目标检测咖啡果实成熟度检测:RetinaNet-X101模型实现
人工智能·目标检测·目标跟踪