Using the JSON to Excel API - Programmatic Access for Developers

Welcome to part 8 of our JSON to Excel series! We've covered the user-facing tools: Web App, Excel Add-in, and WPS Add-in, along with Pro features. Today, we're exploring the JSON to Excel API - the perfect solution for developers who need to integrate JSON to Excel functionality into their applications and workflows.

Introduction to the JSON to Excel API

The JSON to Excel API provides a powerful, programmatic way to convert JSON data to CSV format (which can be easily imported into Excel). It's designed for developers who need to:

  • Automate JSON to Excel conversions in their applications
  • Integrate conversion capabilities into existing workflows
  • Process JSON data from web services and APIs
  • Build custom solutions around JSON to Excel functionality

API Overview

Endpoint

The JSON to Excel API is accessible via a single endpoint:

复制代码
POST https://mcp2.wtsolutions.cn/json-to-excel-api

Two Usage Modes

The API offers two distinct usage modes:

  1. Standard Mode: Free of charge, with standard conversion rules
  2. Pro Mode: Requires valid subscription, with custom conversion rules

Standard API Usage

Request Format

The Standard API accepts POST requests with application/json content type containing one of two parameters:

Parameter Type Required Description
data string No JSON data string to be converted. Must be valid JSON array or object
url string No URL pointing to a JSON file. Either 'data' or 'url' must be provided

Important: Provide either data or url, not both.

Request Examples

Example 1: Converting JSON Data

Request:

json 复制代码
{
  "data": "[{\"name\": \"WTSolutions\", \"age\": 18},{\"name\": \"David\", \"age\": 20}]"
}

Response:

json 复制代码
{
  "data": "\"name,age\\nWTSolutions,18\\nDavid,20\"",
  "isError": false,
  "msg": "success"
}
Example 2: Converting from URL

Request:

json 复制代码
{
  "url": "https://tools.wtsolutions.cn/example.json"
}

Response:

json 复制代码
{
  "data": "\"name,age\\nWTSolutions,18\\nDavid,20\"",
  "isError": false,
  "msg": "success"
}

Response Format

The API returns a JSON object with the following structure:

Field Type Description
isError boolean Indicates if there was an error processing the request
msg string 'success' or error description
data string Converted CSV data string, '' if there was an error

Error Response Example

json 复制代码
{
  "isError": true,
  "msg": "Invalid JSON format",
  "data": ""
}

Pro API Usage

Request Format

The Pro API accepts POST requests with application/json content type containing:

Parameter Type Required Description
data string No JSON data string to be converted. Must be valid JSON array or object
url string No URL pointing to a JSON file. Either 'data' or 'url' must be provided
options object Yes Configuration object for customizing the conversion process

Important:

  • Provide either data or url, not both
  • options is mandatory for Pro mode
  • You must have a valid Pro Code to use Pro mode

Options Object

The options object can contain the following properties:

Property Type Default Description
proCode string "" Pro Code for custom conversion rules. This is mandatory.
jsonMode string "flat" Format mode: "nested" or "flat"
delimiter string "." Delimiter for nested JSON keys when using jsonMode: "nested". Acceptable: ".", "_", "__", "/"
maxDepth string "unlimited" Maximum depth for nested JSON objects when using jsonMode: "nested". Acceptable: "unlimited", "1" ~ "20"

Pro Request Example

Request:

json 复制代码
{
  "data": "[{\"name\":\"John\",\"contact\":{\"email\":\"john@example.com\",\"phone\":\"1234567890\"}},{\"name\":\"Jane\",\"contact\":{\"email\":\"jane@example.com\",\"phone\":\"0987654321\"}}]",
  "options": {
    "proCode": "your-email@example.com",
    "jsonMode": "nested",
    "delimiter": ".",
    "maxDepth": "unlimited"
  }
}

Response:

json 复制代码
{
  "isError": false,
  "data": "name,contact.email,contact.phone\nJohn,john@example.com,1234567890\nJane,jane@example.com,0987654321",
  "msg": "success"
}

Implementation Examples

Python Implementation

Standard Mode
python 复制代码
import requests
import json

# API endpoint
url = "https://mcp2.wtsolutions.cn/json-to-excel-api"

# Prepare your JSON data
json_data = [
    {"name": "John", "age": 30},
    {"name": "Jane", "age": 25}
]

# Make the request
response = requests.post(
    url,
    json={"data": json.dumps(json_data)},
    headers={"Content-Type": "application/json"}
)

# Process the response
result = response.json()

if not result["isError"]:
    csv_data = result["data"]
    print("CSV Data:", csv_data)
    # Save to file
    with open("output.csv", "w") as f:
        f.write(csv_data)
else:
    print("Error:", result["msg"])
Pro Mode
python 复制代码
import requests
import json

# API endpoint
url = "https://mcp2.wtsolutions.cn/json-to-excel-api"

# Prepare your JSON data with nested structure
json_data = [
    {
        "name": "John",
        "contact": {
            "email": "john@example.com",
            "phone": "1234567890"
        }
    },
    {
        "name": "Jane",
        "contact": {
            "email": "jane@example.com",
            "phone": "0987654321"
        }
    }
]

# Make the request with Pro options
response = requests.post(
    url,
    json={
        "data": json.dumps(json_data),
        "options": {
            "proCode": "your-email@example.com",
            "jsonMode": "nested",
            "delimiter": ".",
            "maxDepth": "unlimited"
        }
    },
    headers={"Content-Type": "application/json"}
)

# Process the response
result = response.json()

if not result["isError"]:
    csv_data = result["data"]
    print("CSV Data:", csv_data)
    # Save to file
    with open("output.csv", "w") as f:
        f.write(csv_data)
else:
    print("Error:", result["msg"])

JavaScript/Node.js Implementation

Standard Mode
javascript 复制代码
const axios = require('axios');

// API endpoint
const url = 'https://mcp2.wtsolutions.cn/json-to-excel-api';

// Prepare your JSON data
const jsonData = [
  { name: "John", age: 30 },
  { name: "Jane", age: 25 }
];

// Make the request
axios.post(url, {
  data: JSON.stringify(jsonData)
}, {
  headers: {
    'Content-Type': 'application/json'
  }
})
.then(response => {
  const result = response.data;
  if (!result.isError) {
    console.log('CSV Data:', result.data);
    // Save to file (Node.js)
    const fs = require('fs');
    fs.writeFileSync('output.csv', result.data);
  } else {
    console.log('Error:', result.msg);
  }
})
.catch(error => {
  console.error('Request failed:', error);
});
Pro Mode
javascript 复制代码
const axios = require('axios');

// API endpoint
const url = 'https://mcp2.wtsolutions.cn/json-to-excel-api';

// Prepare your JSON data with nested structure
const jsonData = [
  {
    name: "John",
    contact: {
      email: "john@example.com",
      phone: "1234567890"
    }
  },
  {
    name: "Jane",
    contact: {
      email: "jane@example.com",
      phone: "0987654321"
    }
  }
];

// Make the request with Pro options
axios.post(url, {
  data: JSON.stringify(jsonData),
  options: {
    proCode: 'your-email@example.com',
    jsonMode: 'nested',
    delimiter: '.',
    maxDepth: 'unlimited'
  }
}, {
  headers: {
    'Content-Type': 'application/json'
  }
})
.then(response => {
  const result = response.data;
  if (!result.isError) {
    console.log('CSV Data:', result.data);
    // Save to file (Node.js)
    const fs = require('fs');
    fs.writeFileSync('output.csv', result.data);
  } else {
    console.log('Error:', result.msg);
  }
})
.catch(error => {
  console.error('Request failed:', error);
});

cURL Implementation

Standard Mode
bash 复制代码
curl -X POST https://mcp2.wtsolutions.cn/json-to-excel-api \
  -H "Content-Type: application/json" \
  -d '{"data": "[{\"name\": \"John\", \"age\": 30},{\"name\": \"Jane\", \"age\": 25}]"}'
Pro Mode
bash 复制代码
curl -X POST https://mcp2.wtsolutions.cn/json-to-excel-api \
  -H "Content-Type: application/json" \
  -d '{
    "data": "[{\"name\":\"John\",\"contact\":{\"email\":\"john@example.com\",\"phone\":\"1234567890\"}}]",
    "options": {
      "proCode": "your-email@example.com",
      "jsonMode": "nested",
      "delimiter": ".",
      "maxDepth": "unlimited"
    }
  }'

Data Type Handling

The API automatically handles different JSON data types:

JSON Type CSV Representation
Numbers Numeric values in CSV
Booleans 'true'/'false' strings
Strings Escaped and quoted if necessary
Arrays JSON.stringify array string
Objects JSON.stringify object string (unless using nested mode)

Error Handling

The API provides descriptive error messages for common issues:

Error Message Cause
Invalid JSON format Input data is not valid JSON
Empty JSON data Input data is an empty JSON string
Network Error when fetching file Error downloading file from URL
File not found File at provided URL cannot be found
Server Internal Error Unexpected server error
Invalid Pro Code Pro Code is not valid or expired

Best Practices for Error Handling

  1. Always Check isError Flag

    python 复制代码
    if result["isError"]:
        # Handle error
        print(f"Error: {result['msg']}")
    else:
        # Process successful response
        csv_data = result["data"]
  2. Implement Retry Logic

    python 复制代码
    import time
    max_retries = 3
    for attempt in range(max_retries):
        try:
            response = requests.post(url, json=payload)
            result = response.json()
            if not result["isError"]:
                break
        except Exception as e:
            if attempt < max_retries - 1:
                time.sleep(2 ** attempt)  # Exponential backoff
            else:
                raise
  3. Log Errors for Debugging

    python 复制代码
    import logging
    logging.basicConfig(level=logging.INFO)
    
    if result["isError"]:
        logging.error(f"API Error: {result['msg']}")
        logging.error(f"Request payload: {payload}")

CORS Considerations

When making requests from a web browser, you may encounter CORS (Cross-Origin Resource Sharing) issues. To handle CORS:

  1. Use a Server-Side Proxy

    • Make API calls from your server, not directly from the browser
    • Your server forwards requests to JSON to Excel API
    • Client communicates with your server
  2. Configure CORS Headers

    • Ensure your server properly handles CORS
    • Set appropriate headers for cross-origin requests

Use Cases

Use Case 1: Automated Report Generation

python 复制代码
import requests
import schedule
import time

def generate_daily_report():
    # Fetch data from your API
    api_response = requests.get('https://your-api.com/data')
    json_data = api_response.json()
    
    # Convert to CSV using JSON to Excel API
    conversion_response = requests.post(
        'https://mcp2.wtsolutions.cn/json-to-excel-api',
        json={"data": json.dumps(json_data)}
    )
    
    result = conversion_response.json()
    
    if not result["isError"]:
        # Save CSV file
        with open(f"daily_report_{time.strftime('%Y%m%d')}.csv", "w") as f:
            f.write(result["data"])
        print("Report generated successfully")

# Schedule daily report generation
schedule.every().day.at("09:00").do(generate_daily_report)

while True:
    schedule.run_pending()
    time.sleep(60)

Use Case 2: Web Service Integration

javascript 复制代码
// Express.js endpoint that converts JSON to Excel
app.post('/convert-to-excel', async (req, res) => {
  try {
    const jsonData = req.body.data;
    
    // Call JSON to Excel API
    const response = await axios.post(
      'https://mcp2.wtsolutions.cn/json-to-excel-api',
      {
        data: JSON.stringify(jsonData),
        options: {
          proCode: process.env.PRO_CODE,
          jsonMode: 'nested',
          delimiter: '.'
        }
      }
    );
    
    const result = response.data;
    
    if (!result.isError) {
      // Send CSV back to client
      res.setHeader('Content-Type', 'text/csv');
      res.send(result.data);
    } else {
      res.status(400).json({ error: result.msg });
    }
  } catch (error) {
    res.status(500).json({ error: 'Conversion failed' });
  }
});

Use Case 3: Data Pipeline Integration

python 复制代码
import requests
import pandas as pd

def process_api_data(api_url):
    # Fetch data from external API
    response = requests.get(api_url)
    json_data = response.json()
    
    # Convert to CSV using JSON to Excel API
    conversion_response = requests.post(
        'https://mcp2.wtsolutions.cn/json-to-excel-api',
        json={
            "data": json.dumps(json_data),
            "options": {
                "proCode": "your-email@example.com",
                "jsonMode": "nested",
                "delimiter": "_"
            }
        }
    )
    
    result = conversion_response.json()
    
    if not result["isError"]:
        # Load CSV into pandas for further processing
        from io import StringIO
        df = pd.read_csv(StringIO(result["data"]))
        
        # Perform additional analysis
        print(df.describe())
        
        return df
    else:
        print(f"Error: {result['msg']}")
        return None

# Usage
df = process_api_data('https://api.example.com/data')

Performance Considerations

Rate Limiting

Be mindful of API rate limits:

  • Implement appropriate delays between requests
  • Use caching for repeated conversions
  • Batch requests when possible

Large Data Handling

For large JSON datasets:

  • Consider splitting data into smaller chunks
  • Process asynchronously to avoid blocking
  • Implement progress tracking for long-running conversions

Caching Strategy

Cache conversion results to avoid redundant API calls:

python 复制代码
import hashlib
import json

def get_cache_key(json_data):
    return hashlib.md5(json.dumps(json_data).encode()).hexdigest()

cache = {}

def convert_with_cache(json_data):
    cache_key = get_cache_key(json_data)
    
    if cache_key in cache:
        return cache[cache_key]
    
    # Make API call
    response = requests.post(
        'https://mcp2.wtsolutions.cn/json-to-excel-api',
        json={"data": json.dumps(json_data)}
    )
    result = response.json()
    
    # Cache the result
    cache[cache_key] = result
    return result

Next Steps

Now that you understand how to use the JSON to Excel API programmatically, you're ready to explore the MCP Server integration. In our next post, we'll cover the MCP Server, which provides another way for developers to integrate JSON to Excel functionality into their workflows, particularly for those working with AI and automation tools.

Ready to integrate the API into your application? Start building your JSON to Excel integration today!

相关推荐
qq_435139572 小时前
EasyExcel(FastExcel)Excel导出功能 技术文档
excel
wtsolutions5 小时前
Understanding JSON Formats - What JSON to Excel Supports
json·excel
wtsolutions5 小时前
Advanced Features - Unlocking the Power of JSON to Excel Pro
linux·json·excel
fs哆哆7 小时前
VB.NET和VBA教程-如何查找Excel数据区域边界
excel
小矮强7 小时前
Excel中根据年月日提取月日,并按月日进行排序
excel
开开心心_Every7 小时前
图片批量压缩工具:支持有损无损两种模式
python·游戏·微信·django·pdf·excel·语音识别
wtsolutions8 小时前
Real-World Use Cases - How Organizations Use JSON to Excel
json·excel
wtsolutions8 小时前
Introduction to JSON to Excel - The Ultimate Conversion Tool
json·excel
骆驼爱记录9 小时前
Python打包命令全攻略
自动化·word·excel·新人首发