【rk】——rk3588推理获得logits

说明:用python进行rk3588模型RKLLM_INFER_GET_LOGITS模式推理获得logits

代码:

python 复制代码
import ctypes
import sys
import os
import subprocess
import resource
import threading
import time
import argparse
import json
from flask import Flask, request, jsonify, Response
from transformers import AutoTokenizer
import numpy as np
from tqdm import tqdm

# Set the dynamic library path
rkllm_lib = ctypes.CDLL('lib/librkllmrt.so')
# Define the structures from the library
RKLLM_Handle_t = ctypes.c_void_p
userdata = ctypes.c_void_p(None)

LLMCallState = ctypes.c_int
LLMCallState.RKLLM_RUN_NORMAL  = 0
LLMCallState.RKLLM_RUN_WAITING  = 1
LLMCallState.RKLLM_RUN_FINISH  = 2
LLMCallState.RKLLM_RUN_ERROR   = 3

RKLLMInputType = ctypes.c_int
RKLLMInputType.RKLLM_INPUT_PROMPT      = 0
RKLLMInputType.RKLLM_INPUT_TOKEN       = 1
RKLLMInputType.RKLLM_INPUT_EMBED       = 2
RKLLMInputType.RKLLM_INPUT_MULTIMODAL  = 3

RKLLMInferMode = ctypes.c_int
RKLLMInferMode.RKLLM_INFER_GENERATE = 0
RKLLMInferMode.RKLLM_INFER_GET_LAST_HIDDEN_LAYER = 1
RKLLMInferMode.RKLLM_INFER_GET_LOGITS = 2
class RKLLMExtendParam(ctypes.Structure):
    _fields_ = [
        ("base_domain_id", ctypes.c_int32),
        ("embed_flash", ctypes.c_int8),
        ("enabled_cpus_num", ctypes.c_int8),
        ("enabled_cpus_mask", ctypes.c_uint32),
        ("n_batch", ctypes.c_uint8),
        ("use_cross_attn", ctypes.c_int8),
        ("reserved", ctypes.c_uint8 * 104)
    ]

class RKLLMParam(ctypes.Structure):
    _fields_ = [
        ("model_path", ctypes.c_char_p),
        ("max_context_len", ctypes.c_int32),
        ("max_new_tokens", ctypes.c_int32),
        ("top_k", ctypes.c_int32),
        ("n_keep", ctypes.c_int32),
        ("top_p", ctypes.c_float),
        ("temperature", ctypes.c_float),
        ("repeat_penalty", ctypes.c_float),
        ("frequency_penalty", ctypes.c_float),
        ("presence_penalty", ctypes.c_float),
        ("mirostat", ctypes.c_int32),
        ("mirostat_tau", ctypes.c_float),
        ("mirostat_eta", ctypes.c_float),
        ("skip_special_token", ctypes.c_bool),
        ("is_async", ctypes.c_bool),
        ("img_start", ctypes.c_char_p),
        ("img_end", ctypes.c_char_p),
        ("img_content", ctypes.c_char_p),
        ("extend_param", RKLLMExtendParam),
    ]

class RKLLMLoraAdapter(ctypes.Structure):
    _fields_ = [
        ("lora_adapter_path", ctypes.c_char_p),
        ("lora_adapter_name", ctypes.c_char_p),
        ("scale", ctypes.c_float)
    ]

class RKLLMEmbedInput(ctypes.Structure):
    _fields_ = [
        ("embed", ctypes.POINTER(ctypes.c_float)),
        ("n_tokens", ctypes.c_size_t)
    ]

class RKLLMTokenInput(ctypes.Structure):
    _fields_ = [
        ("input_ids", ctypes.POINTER(ctypes.c_int32)),
        ("n_tokens", ctypes.c_size_t)
    ]

class RKLLMMultiModalInput(ctypes.Structure):
    _fields_ = [
        ("prompt", ctypes.c_char_p),
        ("image_embed", ctypes.POINTER(ctypes.c_float)),
        ("n_image_tokens", ctypes.c_size_t),
        ("n_image", ctypes.c_size_t),
        ("image_width", ctypes.c_size_t),
        ("image_height", ctypes.c_size_t)
    ]

class RKLLMInputUnion(ctypes.Union):
    _fields_ = [
        ("prompt_input", ctypes.c_char_p),
        ("embed_input", RKLLMEmbedInput),
        ("token_input", RKLLMTokenInput),
        ("multimodal_input", RKLLMMultiModalInput)
    ]

class RKLLMInput(ctypes.Structure):
    _fields_ = [
        ("role", ctypes.c_char_p),
        ("enable_thinking", ctypes.c_bool),
        ("input_type", RKLLMInputType),
        ("input_data", RKLLMInputUnion)
    ]

class RKLLMLoraParam(ctypes.Structure):
    _fields_ = [
        ("lora_adapter_name", ctypes.c_char_p)
    ]

class RKLLMPromptCacheParam(ctypes.Structure):
    _fields_ = [
        ("save_prompt_cache", ctypes.c_int),
        ("prompt_cache_path", ctypes.c_char_p)
    ]

class RKLLMInferParam(ctypes.Structure):
    _fields_ = [
        ("mode", RKLLMInferMode),
        ("lora_params", ctypes.POINTER(RKLLMLoraParam)),
        ("prompt_cache_params", ctypes.POINTER(RKLLMPromptCacheParam)),
        ("keep_history", ctypes.c_int)
    ]

class RKLLMResultLastHiddenLayer(ctypes.Structure):
    _fields_ = [
        ("hidden_states", ctypes.POINTER(ctypes.c_float)),
        ("embd_size", ctypes.c_int),
        ("num_tokens", ctypes.c_int)
    ]

class RKLLMResultLogits(ctypes.Structure):
    _fields_ = [
        ("logits", ctypes.POINTER(ctypes.c_float)),
        ("vocab_size", ctypes.c_int),
        ("num_tokens", ctypes.c_int)
    ]

class RKLLMPerfStat(ctypes.Structure):
    _fields_ = [
        ("prefill_time_ms", ctypes.c_float),
        ("prefill_tokens", ctypes.c_int),
        ("generate_time_ms", ctypes.c_float),
        ("generate_tokens", ctypes.c_int),
        ("memory_usage_mb", ctypes.c_float)
    ]

class RKLLMResult(ctypes.Structure):
    _fields_ = [
        ("text", ctypes.c_char_p),
        ("token_id", ctypes.c_int),
        ("last_hidden_layer", RKLLMResultLastHiddenLayer),
        ("logits", RKLLMResultLogits),
        ("perf", RKLLMPerfStat)
    ]

# Create a lock to control multi-user access to the server.
lock = threading.Lock()

# Create a global variable to indicate whether the server is currently in a blocked state.
is_blocking = False

# Define global variables to store the callback function output for displaying in the Gradio interface
system_prompt = ''
global_text = []
global_state = -1
split_byte_data = bytes(b"") # Used to store the segmented byte data
global_logits = None
global_input_ids_len = 0

recevied_messages = []

# Define the callback function
def callback_impl(result, userdata, state):
    global global_text, global_state, split_byte_data
    if state == LLMCallState.RKLLM_RUN_FINISH:
        global_state = state
        print("\n")
        sys.stdout.flush()
    elif state == LLMCallState.RKLLM_RUN_ERROR:
        global_state = state
        print("run error")
        sys.stdout.flush()
    elif state == LLMCallState.RKLLM_RUN_NORMAL:
        global_state = state
        global_text += result.contents.text.decode('utf-8')
    return 0


def ppl_callback_impl(result, userdata, state):
    global global_input_ids_len, global_logits
    if state == LLMCallState.RKLLM_RUN_NORMAL:
        if global_input_ids_len != result.contents.logits.num_tokens:
            print(f"input_ids_len:{global_input_ids_len}, num_tokens:{result.contents.logits.num_tokens}")
        num_tokens = result.contents.logits.num_tokens
        vocab_size = result.contents.logits.vocab_size
        global_logits = np.ctypeslib.as_array(result.contents.logits.logits, shape=(num_tokens, vocab_size))
    elif state == LLMCallState.RKLLM_RUN_FINISH:
        pass
    else:
        raise Exception("ppl Call Error")
    return 0
    

# Connect the callback function between the Python side and the C++ side
callback_type = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.POINTER(RKLLMResult), ctypes.c_void_p, ctypes.c_int)
callback = callback_type(ppl_callback_impl)

# Define the RKLLM class, which includes initialization, inference, and release operations for the RKLLM model in the dynamic library
class RKLLM(object):
    def __init__(self, model_path, lora_model_path = None, prompt_cache_path = None, platform = "rk3588"):

        self.rkllm_createDefaultParam = rkllm_lib.rkllm_createDefaultParam
        self.rkllm_createDefaultParam.argtypes = []
        self.rkllm_createDefaultParam.restype = RKLLMParam
        rkllm_param = self.rkllm_createDefaultParam()
        rkllm_param.model_path = bytes(model_path, 'utf-8')
        rkllm_param.top_k = 1
        rkllm_param.top_p = 0.95
        rkllm_param.temperature = 0.8
        rkllm_param.repeat_penalty = 1.1
        rkllm_param.frequency_penalty = 0.0
        rkllm_param.presence_penalty = 0.0

        rkllm_param.max_new_tokens = 1
        rkllm_param.max_context_len = 2048
        rkllm_param.skip_special_token = ctypes.c_bool(True)
        rkllm_param.extend_param.base_domain_id = 0
        rkllm_param.extend_param.embed_flash = 1

        rkllm_param.extend_param.enabled_cpus_num = 4
        if platform.lower() in ["rk3576", "rk3588"]:
            rkllm_param.extend_param.enabled_cpus_mask = (1 << 4)|(1 << 5)|(1 << 6)|(1 << 7)
        else:
            rkllm_param.extend_param.enabled_cpus_mask = (1 << 0)|(1 << 1)|(1 << 2)|(1 << 3)

        self.handle = RKLLM_Handle_t()

        self.rkllm_init = rkllm_lib.rkllm_init
        self.rkllm_init.argtypes = [ctypes.POINTER(RKLLM_Handle_t), ctypes.POINTER(RKLLMParam), callback_type]
        self.rkllm_init.restype = ctypes.c_int
        ret = self.rkllm_init(ctypes.byref(self.handle), ctypes.byref(rkllm_param), callback)
        if (ret != 0):
            print("\nrkllm init failed\n")
            exit(0)
        else:
            print("\nrkllm init success!\n")

        self.rkllm_run = rkllm_lib.rkllm_run
        self.rkllm_run.argtypes = [RKLLM_Handle_t, ctypes.POINTER(RKLLMInput), ctypes.POINTER(RKLLMInferParam), ctypes.c_void_p]
        self.rkllm_run.restype = ctypes.c_int

        self.rkllm_clear_kv_cache = rkllm_lib.rkllm_clear_kv_cache
        self.rkllm_clear_kv_cache.argtypes = [RKLLM_Handle_t, ctypes.c_int, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(ctypes.c_int)]
        self.rkllm_clear_kv_cache.restype = ctypes.c_int
        
        self.rkllm_destroy = rkllm_lib.rkllm_destroy
        self.rkllm_destroy.argtypes = [RKLLM_Handle_t]
        self.rkllm_destroy.restype = ctypes.c_int
        
        self.rkllm_abort = rkllm_lib.rkllm_abort

        self.rkllm_infer_params = RKLLMInferParam()
        ctypes.memset(ctypes.byref(self.rkllm_infer_params), 0, ctypes.sizeof(RKLLMInferParam))
        self.rkllm_infer_params.mode = RKLLMInferMode.RKLLM_INFER_GET_LOGITS
        self.rkllm_infer_params.keep_history = 0


    def run_with_ids(self, *param):
        role, enable_thinking, ids = param
        rkllm_input = RKLLMInput()
        ctypes.memset(ctypes.byref(rkllm_input), 0, ctypes.sizeof(RKLLMInput))

        rkllm_input.input_type = RKLLMInputType.RKLLM_INPUT_TOKEN
        rkllm_input.input_data.token_input.input_ids = ids.ctypes.data_as(ctypes.POINTER(ctypes.c_int32))
        rkllm_input.input_data.token_input.n_tokens = ctypes.c_size_t(ids.shape[0])
        self.rkllm_run(self.handle, ctypes.byref(rkllm_input), ctypes.byref(self.rkllm_infer_params), None)
        return

    def abort(self):
        return self.rkllm_abort(self.handle)
    
    def release(self):
        self.rkllm_destroy(self.handle)


def cross_entropy_loss_numpy(logits, targets):
    shift_logits = logits - np.max(logits, axis=1, keepdims=True)
    log_probs = shift_logits - np.log(np.sum(np.exp(shift_logits), axis=1, keepdims=True))
    n = logits.shape[0]
    loss = -log_probs[np.arange(n), targets]
    return np.mean(loss)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--rkllm_model_path', type=str, default="models/Qwen3-0.6B-rk3588-w8a8.rkllm", help='Absolute path of the converted RKLLM model on the Linux board;')
    parser.add_argument('--target_platform', type=str, default="rk3588", help='Target platform: e.g., rk3588/rk3576;')
    parser.add_argument('--lora_model_path', type=str, help='Absolute path of the lora_model on the Linux board;')
    parser.add_argument('--prompt_cache_path', type=str, help='Absolute path of the prompt_cache file on the Linux board;')
    args = parser.parse_args()

    ## qwen3-1.7b
    args.rkllm_model_path = "models/Qwen3-1.7B-rk3588-w8a8.rkllm"
    json_file = "assert/gsm8k_17d799_qwen3_1.7b_pred.json"

    ## qwen3-0.6b
    args.rkllm_model_path = "models/Qwen3-0.6B-rk3588-w8a8.rkllm"
    json_file = "assert/gsm8k_17d799_qwen3_0.6B_pred.json"

    if not os.path.exists(args.rkllm_model_path):
        print("Error: Please provide the correct rkllm model path, and ensure it is the absolute path on the board.")
        sys.stdout.flush()
        exit()

    if not (args.target_platform in ["rk3588", "rk3576", "rv1126b", "rk3562"]):
        print("Error: Please specify the correct target platform: rk3588/rk3576/rv1126b/rk3562.")
        sys.stdout.flush()
        exit()

    if args.lora_model_path:
        if not os.path.exists(args.lora_model_path):
            print("Error: Please provide the correct lora_model path, and advise it is the absolute path on the board.")
            sys.stdout.flush()
            exit()

    if args.prompt_cache_path:
        if not os.path.exists(args.prompt_cache_path):
            print("Error: Please provide the correct prompt_cache_file path, and advise it is the absolute path on the board.")
            sys.stdout.flush()
            exit()

    # Fix frequency
    command = "sudo bash fix_freq_{}.sh".format(args.target_platform)
    subprocess.run(command, shell=True)

    # Set resource limit
    resource.setrlimit(resource.RLIMIT_NOFILE, (102400, 102400))

    # Initialize RKLLM model
    print("=========init....===========")
    sys.stdout.flush()
    model_path = args.rkllm_model_path
    rkllm_model = RKLLM(model_path, args.lora_model_path, args.prompt_cache_path, args.target_platform)
    print("load rkllm model from : {}".format(model_path))
    print("==============================")
    sys.stdout.flush()

    
    ## json_file
    with open(json_file, "r") as f:
        json_datas = json.load(f)

    loss = 0.0
    num_batches = 0
    for key, item in tqdm(json_datas.items()):
        input_ids = item['input_ids']
        gen_index = item['gen_index']
        input_ids = np.array(input_ids, dtype=np.int32)
        print("input_ids len:", input_ids.shape[0])

        # Reset global variables.
        ret = rkllm_model.rkllm_clear_kv_cache(rkllm_model.handle, 1, None, None)
        if ret != 0:
            print("clear kv cache failed")

        global_input_ids_len = input_ids.shape[0]
        inputs = ["user", False, input_ids]
        rkllm_model.run_with_ids(*inputs)   

        shift_logits = global_logits[gen_index:-1, :]
        shift_labels = input_ids[gen_index+1:]

        ce_loss = cross_entropy_loss_numpy(shift_logits, shift_labels)
        print("ce Loss: {:.4f}, ppl loss: {:.4f}".format(ce_loss, np.exp(ce_loss)))
        loss += ce_loss
        num_batches += 1
        if num_batches >= 100:
                break

        pass

    ppl_loss = np.exp(loss / num_batches)
    print("ppl loss: {:.4f}".format(ppl_loss))
相关推荐
23遇见5 分钟前
CANN与开源生态:如何融入并赋能主流AI框架的NPU后端支持
人工智能
工程师老罗5 分钟前
YOLOv1数据增强
人工智能·yolo
大模型真好玩7 分钟前
中美大模型“内战”都怎么打!一文详解Claude Opus 4.6和GPT-5.3 CodeX核心特性
人工智能·agent·deepseek
啊森要自信8 分钟前
CANN ops-cv:揭秘视觉算子的硬件感知优化与内存高效利用设计精髓
人工智能·深度学习·架构·transformer·cann
说私域9 分钟前
流量裂变与数字重塑:基于AI智能名片小程序的短视频全域引流范式研究
人工智能·小程序·流量运营·私域运营
繁华落尽,寻一世真情11 分钟前
【基于 AI 的智能小说创作助手】MuMuAINovel-sqlite 基于 AI 的智能小说创作助手
数据库·人工智能·sqlite
kong790692811 分钟前
AI大模型-机器学习
人工智能·机器学习
szcsun512 分钟前
机器学习(五)--决策树
人工智能·决策树·机器学习
scott19851212 分钟前
transformer中的位置编码:从绝对位置编码到旋转位置编码
人工智能·深度学习·transformer
人工智能AI技术13 分钟前
自注意力机制:AI的“超能力放大镜”
人工智能