大模型整个训练流程

首先是预训练得到一个模型,但这个模型不懂人类的指令,所以要进行后训练,先是分两路,
一路是进行SFT,目的是让模型学会遵循指令和对话格式,训练数据是(prompt, completion)对
一路是进行RM奖励建模,和sft并列,建模主要是进行一个打分/排序模型,
然后进行RL强化学习

里面有一个问题值得注意,
奖励模型(RM)不能在 SFT 的基础上"顺着做",
因为 SFT 学的是「怎么生成」,
RM 学的是「怎么判断好坏」,
两者在目标函数、数据形式、梯度方向上是冲突的。

==预训练阶段 ==是 LLM 训练的第一阶段,目标是让模型学习语言的基本规律和世界知识。这个阶段使用海量的文本数据(通常是数 TB 级别),通过自监督学习的方式训练模型。最常见的预训练任务是因果语言建模(Causal Language Modeling),也称为下一个词预测(Next Token Prediction)。

==后训练阶段==则是要解决预训练模型的不足。预训练后的模型虽然具备了强大的语言能力,但它只是一个"预测下一个词"的模型,并不知道如何遵循人类的指令、生成有帮助无害诚实的回答、拒绝不当的请求,以及以对话的方式与人交互。后训练阶段就是要解决这些问题,让模型对齐人类的偏好和价值观。

后训练通常包含三个步骤。

第一步是==监督微调(SFT) [==15],目标是让模型学会遵循指令和对话格式。训练数据是(prompt, completion)对,训练目标与预训练类似,仍然是最大化正确输出的概率:

第二步是奖励建模(RM) 。SFT 后的模型虽然能遵循指令,但生成的回答质量参差不齐。我们需要一种方式来评估回答的质量,这就是奖励模型的作用[13,14]。

第三步是强化学习微调。有了奖励模型后,我们就可以用强化学习来优化语言模型,让它生成更高质量的回答。最经典的算法是 PPO(Proximal Policy Optimization)

传统的 ==人类反馈强化学习RLHF( ==Reinforcement Learning from Human Feedback)[5]需要大量人工标注偏好数据,成本高昂。为了降低成本,研究者提出了 AI 反馈强化学习RLAIF(Reinforcement Learning from AI Feedback)[7],用强大的 AI 模型(如 GPT-4)来替代人类标注员。RLAIF 的工作流程是:用 SFT 模型生成多个候选回答,用强大的 AI 模型对回答进行评分和排序,用 AI 的评分训练奖励模型,用奖励模型进行强化学习。实验表明,RLAIF 的效果接近甚至超过 RLHF,同时成本大幅降低[11]。

相关推荐
Pythonliu73 小时前
AI4Science 模型 平台 开源 智能 未来
人工智能·蛋白
aiguangyuan3 小时前
从零实现循环神经网络:中文情感分析的完整实践指南
人工智能·python·nlp
Master_oid3 小时前
机器学习30:神经网络压缩(Network Compression)①
人工智能·神经网络·机器学习
xinyuan_1234563 小时前
不止于提速:德州数智招标采购交易平台,重塑采购生态新效率
大数据·人工智能
沃达德软件3 小时前
智能车辆检索系统解析
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·目标跟踪
java1234_小锋3 小时前
【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - 使用datasets库加载Huggingface数据集
人工智能·深度学习
XuanTao774 小时前
【安卓工具实测】影视仓更新!!追剧党狂喜!影视仓无广告版太香了!
深度学习·数码相机·智能手机·软件工程·软件构建
kkk_皮蛋4 小时前
作为一个学生,如何用免费 AI 工具手搓了一款 Android AI 日记 App
android·人工智能
TTGGGFF4 小时前
从零到一:五分钟快速部署轻量化 AI 知识库模型(GTE + SeqGPT)
人工智能