Opencv 学习笔记:轮廓发现(提取 + 绘制全流程)

轮廓发现是图像目标分割、形状分析的核心技术,本文通过 "高斯滤波→二值化→轮廓提取→轮廓绘制" 的完整流程,演示 OpenCV 中轮廓的查找与可视化,新手可直接复用。

核心代码实现

python 复制代码
import cv2 as cv
import numpy as np

# 1. 读取图像并校验
src = cv.imread('.\image\39.bmp')
if src is None:
    print('图像读取失败,请检查路径!')
    exit()

# 2. 预处理:高斯滤波去噪(避免噪点干扰轮廓提取)
dst = cv.GaussianBlur(src, (3, 3), 15)
# 转灰度图
gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
# 二值化(分离前景与背景)
ret, binary = cv.threshold(gray, 100, 255, cv.THRESH_BINARY)

# 3. 查找轮廓(核心操作)
# 参数说明:二值图、轮廓检索模式、轮廓逼近方法
contours, hierarchy = cv.findContours(
    binary, 
    cv.RETR_TREE,       # 检索所有轮廓并建立层级关系
    cv.CHAIN_APPROX_SIMPLE  # 压缩轮廓点(仅保留拐点,节省内存)
)

# 4. 绘制所有轮廓(在滤波后的图像上标注)
draw_img = dst.copy()  # 复制图像,避免修改原图
for i, contour in enumerate(contours):
    # 参数:绘图图像、轮廓列表、轮廓索引(-1绘制所有)、颜色、线宽
    cv.drawContours(draw_img, contours, i, (255, 0, 0), 5)

# 5. 显示结果
cv.namedWindow('src', cv.WINDOW_NORMAL)
cv.resizeWindow('src', 600, 600)
cv.imshow('src', src)          # 原图
cv.imshow('binary', binary)    # 二值化图
cv.namedWindow('result', cv.WINDOW_NORMAL)
cv.resizeWindow('result', 600, 600)
cv.imshow('result', draw_img) # 轮廓绘制结果

cv.waitKeyEx(0)
cv.destroyAllWindows()

关键知识点解析

1. 轮廓发现核心流程

步骤 核心 API 作用说明
高斯滤波 cv.GaussianBlur() 去除图像噪点,避免噪点被识别为伪轮廓
二值化 cv.threshold() 将图像转为黑白,让轮廓特征更明显
查找轮廓 cv.findContours() 提取图像中所有轮廓的坐标点
绘制轮廓 cv.drawContours() 将轮廓可视化标注在图像上

2. 核心参数说明

  • findContours 参数
    • cv.RETR_TREE:检索所有轮廓并保留层级关系(如轮廓嵌套),常用还有cv.RETR_EXTERNAL(仅检索最外层轮廓);
    • cv.CHAIN_APPROX_SIMPLE:压缩轮廓点(如矩形仅保留 4 个角点),比cv.CHAIN_APPROX_NONE(保留所有点)更节省内存。
  • drawContours 参数
    • 轮廓索引i:指定绘制第 i 个轮廓,传入-1可一次性绘制所有轮廓;
    • 线宽5:轮廓线条粗细,值为-1时会填充轮廓内部。

3. 避坑与优化技巧

  • 绘图载体 :原代码直接在滤波图dst上绘图,改为draw_img = dst.copy(),避免修改原始滤波图像;

  • 二值化阈值:阈值 100 需根据图像调整,暗目标可降低阈值(如 80),亮背景可提高阈值(如 120);

  • 轮廓筛选 :可通过轮廓面积过滤小噪点轮廓:

    python 复制代码
    # 仅保留面积≥500的轮廓
    valid_contours = [cnt for cnt in contours if cv.contourArea(cnt) >= 500]
  • 轮廓逼近 :对不规则轮廓,可使用cv.approxPolyDP()拟合为规则形状(如多边形、圆形)。

总结

  1. 轮廓发现的核心预处理是高斯滤波 + 二值化,去噪是提升轮廓提取准确率的关键;
  2. findContoursRETR_TREE适合复杂轮廓(嵌套),RETR_EXTERNAL适合仅需外层轮廓的场景;
  3. 绘制轮廓时建议复制图像作为绘图载体,避免修改原始图像。
相关推荐
LaoZhangGong1232 小时前
学习TCP/IP的第5步:传输数据
网络·学习·tcp/ip
qwy7152292581632 小时前
3-用摄像头拍摄图像及视频
人工智能·opencv·音视频
茶栀(*´I`*)2 小时前
【视觉探索】OpenCV 全景导论:从数字图像基石到核心模块体系
人工智能·opencv·计算机视觉
zhangrelay3 小时前
如何让手机电脑流畅飞起低碳节能性能拉满-软件安装篇-ESR-Extended Support Release-延长支持版-LTS
linux·运维·笔记·学习
岳轩子3 小时前
jvm学习 引入 第一晚
jvm·学习
胡西风_foxww3 小时前
学习python人工智能路径及资源
人工智能·python·学习·路径·资源·书籍·路线
@––––––3 小时前
论文阅读笔记:The Bitter Lesson (苦涩的教训)
论文阅读·人工智能·笔记
好奇龙猫3 小时前
【大学院-筆記試験練習:线性代数和数据结构(17)】
数据结构·学习·线性代数
承渊政道3 小时前
C++学习之旅【C++拓展学习之反向迭代器实现、计算器实现以及逆波兰表达式】
c语言·开发语言·c++·学习·visual studio