一、MATLAB标准子集模拟实现
1.1 主程序框架
matlab
% subset_simulation_main.m
% 子集模拟主程序
clear all; close all; clc;
% 设置参数
N = 1000; % 每层样本数
p0 = 0.1; % 条件概率
Nc = round(p0*N); % 条件样本数
dim = 2; % 问题维度
% 定义极限状态函数(示例:双变量非线性函数)
limit_state_func = @(x) 5 - 0.5*(x(1)-1).^2 - (x(2)+0.5).^2;
% 运行子集模拟
[Pf, cov, samples, levels] = subsetSimulation(limit_state_func, dim, N, p0);
% 显示结果
fprintf('失效概率: %e\n', Pf);
fprintf('变异系数: %f\n', cov);
fprintf('模拟层数: %d\n', length(levels));
1.2 标准子集模拟函数
matlab
% subsetSimulation.m
% 标准子集模拟实现
function [Pf, cov, all_samples, levels] = subsetSimulation(g, dim, N, p0)
% 输入参数:
% g - 极限状态函数句柄 (g(X) <= 0 表示失效)
% dim - 随机变量维度
% N - 每层样本数
% p0 - 条件概率
% 输出参数:
% Pf - 失效概率估计
% cov - 变异系数
% all_samples - 所有样本
% levels - 各层阈值
% 初始化
Nc = round(p0*N); % 条件样本数
samples = randn(N, dim); % 第0层样本
g_values = zeros(N, 1); % 极限状态函数值
% 计算第0层
for i = 1:N
g_values(i) = g(samples(i,:)');
end
% 排序并确定阈值
[sorted_g, idx] = sort(g_values);
b = sorted_g(Nc); % 第一层阈值
% 存储结果
all_samples = {samples};
levels = b;
Pf_conditional = 1.0;
layer = 0;
% 子集模拟循环
while b > 0
layer = layer + 1;
fprintf('第%d层模拟, 阈值: %.4f\n', layer, b);
% 选择种子样本
seed_samples = samples(idx(1:Nc), :);
% 使用MCMC生成新样本
[new_samples, new_g_values] = mcmc_sampling(g, seed_samples, b, N);
% 更新样本和函数值
samples = new_samples;
g_values = new_g_values;
% 排序并确定新阈值
[sorted_g, idx] = sort(g_values);
if Nc < N
b = sorted_g(Nc);
else
b = sorted_g(end);
end
% 存储结果
all_samples{end+1} = samples;
levels(end+1) = b;
Pf_conditional = Pf_conditional * p0;
end
% 计算最终失效概率
n_fail = sum(g_values <= 0);
Pf = Pf_conditional * (n_fail / N);
% 计算变异系数(简化估计)
cov = sqrt((1-p0)/(N*p0) + (layer+1)*(1-p0)/(N*p0^2));
end
1.3 MCMC抽样函数
matlab
% mcmc_sampling.m
% Metropolis-Hastings MCMC抽样
function [samples, g_values] = mcmc_sampling(g, seeds, threshold, N_total)
% 输入参数:
% g - 极限状态函数
% seeds - 种子样本
% threshold - 当前层阈值
% N_total - 需要生成的总样本数
% 输出参数:
% samples - 新样本
% g_values - 对应的函数值
[Nc, dim] = size(seeds);
samples = zeros(N_total, dim);
g_values = zeros(N_total, 1);
% 初始样本为种子
samples(1:Nc, :) = seeds;
for i = 1:Nc
g_values(i) = g(seeds(i,:)');
end
% MCMC参数
sigma = 1.0; % 建议分布标准差
acceptance_rate = 0;
% 生成剩余样本
for i = Nc+1:N_total
% 随机选择一个种子作为起点
idx = randi(Nc);
current = seeds(idx, :);
accepted = false;
attempts = 0;
max_attempts = 100;
while ~accepted && attempts < max_attempts
% 生成候选样本
candidate = current + sigma * randn(1, dim);
% 计算函数值
g_candidate = g(candidate');
% 接受准则:必须在当前失效域内
if g_candidate <= threshold
samples(i, :) = candidate;
g_values(i) = g_candidate;
% 以一定概率更新种子
if rand() < 0.1
seeds(idx, :) = candidate;
end
accepted = true;
acceptance_rate = acceptance_rate + 1;
end
attempts = attempts + 1;
end
% 如果未接受,使用最后一个种子
if ~accepted
samples(i, :) = current;
g_values(i) = g(current');
end
end
acceptance_rate = acceptance_rate / (N_total - Nc);
fprintf('MCMC接受率: %.2f%%\n', acceptance_rate*100);
end
二、子集模拟优化算法
2.1 自适应MCMC优化
matlab
% adaptive_subset_simulation.m
% 自适应子集模拟
function [Pf, cov] = adaptiveSubsetSimulation(g, dim, N, p0)
% 自适应调整MCMC步长以提高效率
Nc = round(p0*N);
samples = randn(N, dim);
g_values = zeros(N, 1);
% 计算初始样本
for i = 1:N
g_values(i) = g(samples(i,:)');
end
[sorted_g, idx] = sort(g_values);
b = sorted_g(Nc);
Pf_conditional = 1.0;
layer = 0;
while b > 0
layer = layer + 1;
% 选择种子
seeds = samples(idx(1:Nc), :);
% 自适应MCMC参数
target_acceptance = 0.3; % 目标接受率
sigma = adaptiveSigma(seeds, g, b, target_acceptance);
fprintf('第%d层 - 阈值: %.4f, 自适应sigma: %.3f\n', layer, b, sigma);
% 使用自适应MCMC
[samples, g_values] = adaptive_mcmc(g, seeds, b, N, sigma);
% 更新阈值
[sorted_g, idx] = sort(g_values);
b = sorted_g(Nc);
Pf_conditional = Pf_conditional * p0;
end
n_fail = sum(g_values <= 0);
Pf = Pf_conditional * (n_fail / N);
cov = sqrt((1-p0)/(N*p0));
end
function sigma = adaptiveSigma(seeds, g, threshold, target_rate)
% 自适应调整sigma以达到目标接受率
sigma = 1.0;
[Nc, dim] = size(seeds);
% 测试不同的sigma值
test_sigmas = [0.1, 0.5, 1.0, 2.0, 3.0];
accept_rates = zeros(size(test_sigmas));
for s = 1:length(test_sigmas)
sigma_test = test_sigmas(s);
accepted = 0;
total = 100;
for i = 1:total
idx = randi(Nc);
current = seeds(idx, :);
candidate = current + sigma_test * randn(1, dim);
if g(candidate') <= threshold
accepted = accepted + 1;
end
end
accept_rates(s) = accepted / total;
end
% 选择最接近目标接受率的sigma
[~, idx] = min(abs(accept_rates - target_rate));
sigma = test_sigmas(idx);
end
2.2 基于重要抽样的混合算法
matlab
% hybrid_subset_simulation.m
% 混合子集模拟(结合重要抽样)
function [Pf, cov] = hybridSubsetSimulation(g, dim, N, p0)
% 结合重要抽样提高效率
Nc = round(p0*N);
samples = randn(N, dim);
g_values = zeros(N, 1);
% 第一层:标准抽样
for i = 1:N
g_values(i) = g(samples(i,:)');
end
[sorted_g, idx] = sort(g_values);
thresholds = sorted_g(Nc);
Pf_conditional = 1.0;
% 后续层:混合抽样
while thresholds(end) > 0
seeds = samples(idx(1:Nc), :);
% 估计重要抽样密度
[mu, Sigma] = estimateImportanceDensity(seeds);
% 混合抽样:一半MCMC,一半重要抽样
N_mcmc = round(N/2);
N_is = N - N_mcmc;
% MCMC抽样
[samples_mcmc, g_mcmc] = mcmc_sampling(g, seeds, thresholds(end), N_mcmc);
% 重要抽样
[samples_is, g_is, weights] = importanceSampling(g, mu, Sigma, N_is, thresholds(end));
% 合并样本
samples = [samples_mcmc; samples_is];
g_values = [g_mcmc; g_is];
% 加权排序
weighted_values = g_values .* weights;
[sorted_g, idx] = sort(weighted_values);
thresholds(end+1) = sorted_g(Nc);
Pf_conditional = Pf_conditional * p0;
end
% 计算失效概率(考虑权重)
fail_idx = g_values <= 0;
Pf = Pf_conditional * sum(weights(fail_idx)) / sum(weights);
cov = 0.1; % 简化变异系数计算
end
function [mu, Sigma] = estimateImportanceDensity(samples)
% 估计重要抽样密度参数
mu = mean(samples);
Sigma = cov(samples);
% 添加正则化防止奇异
Sigma = Sigma + eye(size(Sigma)) * 0.01;
end
function [samples, g_values, weights] = importanceSampling(g, mu, Sigma, N, threshold)
% 重要抽样
dim = length(mu);
% 从建议分布抽样
samples = mvnrnd(mu, Sigma, N);
g_values = zeros(N, 1);
weights = zeros(N, 1);
% 计算权重
for i = 1:N
g_values(i) = g(samples(i,:)');
if g_values(i) <= threshold
% 权重 = 目标分布/建议分布
% 目标分布为标准正态,建议分布为N(mu, Sigma)
target_pdf = mvnpdf(samples(i,:), zeros(1,dim), eye(dim));
proposal_pdf = mvnpdf(samples(i,:), mu, Sigma);
weights(i) = target_pdf / proposal_pdf;
else
weights(i) = 0;
end
end
end
2.3 并行计算优化
matlab
% parallel_subset_simulation.m
% 并行子集模拟
function [Pf, cov] = parallelSubsetSimulation(g, dim, N, p0, num_workers)
% 使用并行计算加速
% 设置并行池
if isempty(gcp('nocreate'))
parpool(num_workers);
end
Nc = round(p0*N);
samples = randn(N, dim);
% 并行计算极限状态函数
g_values = zeros(N, 1);
parfor i = 1:N
g_values(i) = g(samples(i,:)');
end
[sorted_g, idx] = sort(g_values);
b = sorted_g(Nc);
Pf_conditional = 1.0;
while b > 0
seeds = samples(idx(1:Nc), :);
% 并行MCMC抽样
samples = parallel_mcmc(g, seeds, b, N, num_workers);
% 并行计算函数值
g_values = zeros(N, 1);
parfor i = 1:N
g_values(i) = g(samples(i,:)');
end
[sorted_g, idx] = sort(g_values);
b = sorted_g(Nc);
Pf_conditional = Pf_conditional * p0;
end
n_fail = sum(g_values <= 0);
Pf = Pf_conditional * (n_fail / N);
cov = sqrt((1-p0)/(N*p0));
end
function samples = parallel_mcmc(g, seeds, threshold, N_total, num_workers)
% 并行MCMC抽样
[Nc, dim] = size(seeds);
samples_per_worker = ceil(N_total / num_workers);
% 分配任务
seeds_cell = cell(num_workers, 1);
for w = 1:num_workers
seeds_cell{w} = seeds;
end
% 并行执行
spmd
worker_samples = mcmc_sampling_worker(g, seeds_cell{labindex}, ...
threshold, samples_per_worker);
end
% 收集结果
samples = [];
for w = 1:num_workers
samples = [samples; worker_samples{w}];
end
% 截断到所需数量
samples = samples(1:N_total, :);
end
三、系统可靠性分析示例
3.1 串联系统可靠性
matlab
% series_system_reliability.m
% 串联系统可靠性分析
function Pf_series = seriesSystemReliability(dim, N, p0)
% 定义多个极限状态函数(串联系统)
g1 = @(x) 3 - norm(x - [0.5, 0.5], 2);
g2 = @(x) 2 - abs(x(1) - x(2));
g3 = @(x) 4 - sum(abs(x));
% 串联系统:所有组件都失效
g_system = @(x) max([g1(x), g2(x), g3(x)]);
% 运行子集模拟
[Pf_series, cov] = subsetSimulation(g_system, dim, N, p0);
fprintf('串联系统失效概率: %e\n', Pf_series);
fprintf('变异系数: %.4f\n', cov);
% 敏感性分析
sensitivityAnalysis(g_system, dim);
end
3.2 并联系统可靠性
matlab
% parallel_system_reliability.m
% 并联系统可靠性分析
function Pf_parallel = parallelSystemReliability(dim, N, p0)
% 并联系统:任一组件失效
g1 = @(x) 3 - norm(x, 2);
g2 = @(x) 2 - x(1)^2 - 0.5*x(2)^2;
g3 = @(x) 1 - 0.8*x(1) - 0.6*x(2);
% 并联系统:最小函数值决定失效
g_system = @(x) min([g1(x), g2(x), g3(x)]);
[Pf_parallel, cov] = subsetSimulation(g_system, dim, N, p0);
fprintf('并联系统失效概率: %e\n', Pf_parallel);
fprintf('变异系数: %.4f\n', cov);
end
3.3 敏感性分析
matlab
% sensitivityAnalysis.m
% 可靠性敏感性分析
function sensitivityAnalysis(g, dim)
% 通过扰动分析计算敏感性
N_samples = 10000;
samples = randn(N_samples, dim);
% 计算基础失效概率
g_values = zeros(N_samples, 1);
for i = 1:N_samples
g_values(i) = g(samples(i,:)');
end
Pf_base = mean(g_values <= 0);
% 变量敏感性
sensitivities = zeros(1, dim);
for d = 1:dim
% 扰动第d个变量
perturbed_samples = samples;
perturbed_samples(:, d) = perturbed_samples(:, d) * 1.1; % 10%增加
% 计算扰动后的失效概率
g_values_perturbed = zeros(N_samples, 1);
for i = 1:N_samples
g_values_perturbed(i) = g(perturbed_samples(i,:)');
end
Pf_perturbed = mean(g_values_perturbed <= 0);
% 计算敏感性
sensitivities(d) = (Pf_perturbed - Pf_base) / (0.1 * Pf_base);
end
% 显示结果
fprintf('\n敏感性分析:\n');
for d = 1:dim
fprintf('变量 %d 敏感性: %.4f\n', d, sensitivities(d));
end
% 绘制敏感性图
figure;
bar(sensitivities);
xlabel('变量索引');
ylabel('敏感性系数');
title('可靠性敏感性分析');
grid on;
end
四、性能评估与比较
matlab
% performance_comparison.m
% 不同算法性能比较
function performanceComparison()
% 测试函数
g = @(x) 5 - norm(x, 2); % 简单球面失效域
dim = 5;
N = 2000;
p0 = 0.1;
% 测试不同算法
algorithms = {'标准子集模拟', '自适应子集模拟', '混合子集模拟'};
times = zeros(3, 1);
Pfs = zeros(3, 1);
% 标准算法
tic;
[Pfs(1), ~] = subsetSimulation(g, dim, N, p0);
times(1) = toc;
% 自适应算法
tic;
[Pfs(2), ~] = adaptiveSubsetSimulation(g, dim, N, p0);
times(2) = toc;
% 混合算法
tic;
[Pfs(3), ~] = hybridSubsetSimulation(g, dim, N, p0);
times(3) = toc;
% 显示结果
fprintf('\n算法性能比较:\n');
fprintf('%-20s %-15s %-15s\n', '算法', '失效概率', '计算时间(s)');
for i = 1:3
fprintf('%-20s %-15.2e %-15.2f\n', algorithms{i}, Pfs(i), times(i));
end
% 绘制比较图
figure('Position', [100, 100, 1200, 400]);
subplot(1,2,1);
bar(Pfs);
set(gca, 'XTickLabel', algorithms);
ylabel('失效概率');
title('失效概率比较');
grid on;
subplot(1,2,2);
bar(times);
set(gca, 'XTickLabel', algorithms);
ylabel('计算时间(s)');
title('计算效率比较');
grid on;
end
参考代码 利用子集模拟进行系统和静态可靠性分析,子集模拟优化算法 www.3dddown.com/csb/113043.html
五、使用建议
- 标准子集模拟:适用于大多数问题,实现简单
- 自适应优化:当MCMC接受率不理想时使用
- 混合算法:适用于高维问题或复杂失效域
- 并行计算:当计算时间过长时考虑