AI-大语言模型LLM-Transformer架构5-残差连接与前馈网络

目的

为避免一学就会、一用就废,这里做下笔记

说明

  1. 本文内容紧承前文-Transformer架构1-整体介绍Transformer架构4-多头注意力、掩码注意力、交叉注意力,欲渐进,请循序
  2. 本文重点介绍Transformer架构中的残差连接与前馈网络,它们在编码器堆栈和解码器堆栈中都有用到

残差连接

  • 残差连接的详细内容,在前文-残差网络中已经提及。
  • 简单讲,残差连接是一种技术手段,为了解决极深网络中的梯度消失和网络退化问题,降低优化难度,为深层网络的训练效果托底
  • 残差连接的核心,是让网络从学习完整的目标映射到学习一个残差,这样有价值的浅层信息不至于在网络的层层传递中丢失。
  • 上图中,1-5号残差连接后,分别对应一个Add & Norm模块,以1号残差连接对应的Add & Norm模块为例详细说明。
    1、Add操作是残差连接的一部分,它把嵌入层的输出矩阵X注意力层的输出矩阵Z 相加,以确保后续层工作时,不会丢失浅层X的信息
    2、Norm操作是进行层归一化,归一化的作用:
    • 1、提高稳定性:稳定数值范围(限制个别极端值的影响)
    • 2、提升效率:加速收敛

前馈网络

  • 前馈网络就是前文-神经网络中最常见的基础神经网络,也称多层感知机(MLP)、全连接网络。
  • 前馈:工作时,只有前向计算,没有循环或反馈连接。与前馈神经网络并列的概念是循环神经网络如RNN

为什么要引入前馈网络

简单说:如果注意力层是让每个词"看到"其他词,那么前馈网络就是让每个词"深入思考"自己。两者结合,才能实现真正的理解。

  • 注意力层的计算是加权求和,是一种线性计算,而线性能够拟合的模式有限

  • 前馈网络弥注意力层的不足,使用的是非线性计算,使模型能够拟合更复杂的模式。

  • 两者结合效果如下:

    输入:[词1, 词2, 词3]

    注意力:词1←→词2←→词3(建立关系)

    前馈:词1→深加工,词2→深加工,词3→深加工

    输出:既有关系信息,又有深度特征

相关推荐
酩酊仙人1 小时前
.Net机器学习入门
人工智能·机器学习·.net
阿杰学AI1 小时前
AI核心知识71——大语言模型之Prompt Caching (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·prompt caching·提示词缓存
人工智能AI技术2 小时前
【Agent从入门到实践】46 自动化工具集成:结合Jenkins、GitLab CI,实现研发流程自动化
人工智能·python
esmap2 小时前
技术深析:ESMAP智慧医院解决方案——基于AOA蓝牙定位的全场景精准感知实现
大数据·网络·人工智能
Blossom.1182 小时前
把大模型当“编译器”用:一句自然语言直接生成SoC的Verilog
数据库·人工智能·python·sql·单片机·嵌入式硬件·fpga开发
Gogo8162 小时前
深度解析 GitHub Copilot Agent Skills:如何打造可跨项目的 AI 专属“工具箱”
人工智能·github·copilot
Chef_Chen2 小时前
数据科学每日总结--Day50--机器学习
人工智能·机器学习·支持向量机
火山引擎开发者社区2 小时前
来火山引擎部署Moltbot,9.9元打造私人AI助手
人工智能·火山引擎
一休哥助手4 小时前
2026年1月29日人工智能早间新闻
人工智能