大数据Spark(七十九):Action行动算子countByKey和countByValue使用案例

文章目录

Action行动算子countByKey和countByValue使用案例

一、countByKey使用案例

二、countByValue使用案例


Action行动算子countByKey和countByValue使用案例

一、countByKey使用案例

作用到K,V格式的RDD上,根据Key计数相同Key出现的次数,结果会回收到Driver端。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("CountByKeyTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaPairRDD<String, Integer> rdd = sc.parallelizePairs(Arrays.asList(
        new Tuple2<>("a", 1),
        new Tuple2<>("b", 2),
        new Tuple2<>("c", 3),
        new Tuple2<>("a", 4),
        new Tuple2<>("b", 5),
        new Tuple2<>("a", 6),
        new Tuple2<>("c", 7)

));

//countByKey:统计每种key的个数
Map<String, Long> map = rdd.countByKey();
map.forEach((k,v)-> System.out.println(k+":"+v));

sc.stop();

Scala代码:

Scala 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("CountByKeyTest")
val sc = new SparkContext(conf)
val rdd: RDD[(String, Int)] = sc.parallelize(List(
  ("a", 1),
  ("b", 2),
  ("c", 3),
  ("a", 4),
  ("b", 5),
  ("a", 6),
  ("c", 7)
))

val result: collection.Map[String, Long] = rdd.countByKey()
result.foreach(println)

sc.stop()

二、countByValue使用案例

根据RDD数据集每个元素相同的内容来计数,返回相同元素对应的条数,作用到KV或者非KV格式RDD上都可以,结果也会回收到Driver端。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("CountByValueTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> rdd = sc.parallelize(Arrays.asList("a", "b", "c", "a", "b", "c", "a", "b", "c"));
//countByValue:统计每种value的个数
Map<String, Long> map = rdd.countByValue();
map.forEach((k,v)-> System.out.println(k+":"+v));
sc.stop();

Scala代码:

Scala 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("CountByValueTest")
val sc = new SparkContext(conf)
val rdd: RDD[String] = sc.parallelize(List("a", "b", "c", "a", "b", "a", "c"))

val map: collection.Map[String, Long] = rdd.countByValue()
map.foreach(println)
sc.stop()

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
相关推荐
wuxi_joe5 小时前
一家研发制造企业的“软件进化史”
大数据·数据库·制造
发哥来了5 小时前
主流AI视频生成模型商用化能力评测:三大核心维度对比分析
大数据·人工智能·音视频
Hello.Reader5 小时前
Flink CLI 从提交作业到 Savepoint/Checkpoint、再到 YARN/K8S 与 PyFlink
大数据·flink·kubernetes
电商API&Tina5 小时前
唯品会获得vip商品详情 API 返回值说明
java·大数据·开发语言·数据库·人工智能·spring
Acrelhuang5 小时前
工厂配电升级优选 安科瑞智能断路器安全提效又节能-安科瑞黄安南
大数据·运维·开发语言·人工智能·物联网
ha_lydms5 小时前
Hadoop 架构
大数据·hadoop·hdfs·架构·mapreduce·yarn·数据处理
中國龍在廣州6 小时前
AI时代“新BAT”正在崛起
大数据·人工智能·深度学习·重构·机器人
少许极端6 小时前
Redis入门指南(八):从零到分布式缓存-集群机制、缓存机制、分布式锁
redis·分布式·缓存·分布式锁
EveryPossible7 小时前
大数据模型练习3
大数据