Flutter for OpenHarmony 实战:2048游戏算法与优化深度解析

欢迎加入开源鸿蒙跨平台社区:开源鸿蒙跨平台开发者社区

Flutter for OpenHarmony 实战:2048游戏算法与优化深度解析

文章目录

  • [Flutter for OpenHarmony 实战:2048游戏算法与优化深度解析](#Flutter for OpenHarmony 实战:2048游戏算法与优化深度解析)

摘要

2048游戏看似简单,但其背后蕴含了丰富的算法设计与优化技巧。本文深入探讨2048游戏的核心算法实现,包括高效合并算法、启发式AI实现、游戏难度平衡、最优策略分析等高级主题。通过本文学习,读者将掌握如何设计更智能的游戏AI,理解游戏平衡性的设计原理。


一、合并算法优化

1.1 基础合并算法回顾

dart 复制代码
bool _moveLeft() {
  bool moved = false;

  for (int r = 0; r < 4; r++) {
    final row = _board[r].where((n) => n != 0).toList();
    final newRow = <int>[];

    for (int i = 0; i < row.length; i++) {
      if (i + 1 < row.length && row[i] == row[i + 1]) {
        final merged = row[i] * 2;
        newRow.add(merged);
        _score += merged;
        i++; // 跳过下一个
      } else {
        newRow.add(row[i]);
      }
    }

    while (newRow.length < 4) {
      newRow.add(0);
    }

    for (int c = 0; c < 4; c++) {
      if (_board[r][c] != newRow[c]) {
        moved = true;
      }
      _board[r][c] = newRow[c];
    }
  }

  return moved;
}

1.2 优化合并算法

使用更高效的合并策略:

dart 复制代码
class OptimizedMover {
  // 向左移动并合并
  static (List<List<int>>, bool, int) moveLeft(List<List<int>> board) {
    final newBoard = List.generate(4, (r) => List<int>.from(board[r]));
    bool moved = false;
    int scoreGain = 0;

    for (int r = 0; r < 4; r++) {
      // 提取非零元素
      final row = newBoard[r].where((n) => n != 0).toList();
      final merged = <int>[];
      int i = 0;

      while (i < row.length) {
        if (i + 1 < row.length && row[i] == row[i + 1]) {
          // 合并相同数字
          final value = row[i] * 2;
          merged.add(value);
          scoreGain += value;
          i += 2;
        } else {
          merged.add(row[i]);
          i++;
        }
      }

      // 补齐0
      while (merged.length < 4) {
        merged.add(0);
      }

      // 检测变化
      for (int c = 0; c < 4; c++) {
        if (newBoard[r][c] != merged[c]) {
          moved = true;
        }
        newBoard[r][c] = merged[c];
      }
    }

    return (newBoard, moved, scoreGain);
  }

  // 向右移动
  static (List<List<int>>, bool, int) moveRight(List<List<int>> board) {
    final reversed = List.generate(4, (r) => board[r].reversed.toList());
    final (newBoard, moved, score) = moveLeft(reversed);
    final restored = List.generate(4, (r) => newBoard[r].reversed.toList());
    return (restored, moved, score);
  }

  // 向上移动
  static (List<List<int>>, bool, int) moveUp(List<List<int>> board) {
    final transposed = _transpose(board);
    final (newBoard, moved, score) = moveLeft(transposed);
    return (_transpose(newBoard), moved, score);
  }

  // 向下移动
  static (List<List<int>>, bool, int) moveDown(List<List<int>> board) {
    final transposed = _transpose(board);
    final (newBoard, moved, score) = moveRight(transposed);
    return (_transpose(newBoard), moved, score);
  }

  // 转置矩阵
  static List<List<int>> _transpose(List<List<int>> board) {
    return List.generate(4, (r) =>
      List.generate(4, (c) => board[c][r])
    );
  }
}

二、AI实现

2.1 期望算法

dart 复制代码
class ExpectimaxAI {
  static const int maxDepth = 3;

  static String getBestMove(List<List<int>> board) {
    double bestScore = -double.infinity;
    String bestMove = 'left';

    for (final move in ['left', 'right', 'up', 'down']) {
      final result = _tryMove(board, move);
      if (!result.$2) continue; // 无效移动

      final score = _expectimax(result.$1, maxDepth - 1, false);
      if (score > bestScore) {
        bestScore = score;
        bestMove = move;
      }
    }

    return bestMove;
  }

  static double _expectimax(List<List<int>> board, int depth, bool isMax) {
    if (depth == 0) {
      return _evaluateBoard(board);
    }

    if (isMax) {
      // 玩家回合:选择最优移动
      double maxScore = -double.infinity;

      for (final move in ['left', 'right', 'up', 'down']) {
        final result = _tryMove(board, move);
        if (!result.$2) continue;

        final score = _expectimax(result.$1, depth - 1, false);
        if (score > maxScore) {
          maxScore = score;
        }
      }

      return maxScore == -double.infinity ? _evaluateBoard(board) : maxScore;
    } else {
      // 随机回合:计算期望值
      final emptyCells = _getEmptyCells(board);
      if (emptyCells.isEmpty) {
        return _expectimax(board, depth - 1, true);
      }

      double totalScore = 0;
      int count = 0;

      // 尝试在空位放置2或4
      for (final cell in emptyCells) {
        for (final value in [2, 4]) {
          final newBoard = _placeTile(board, cell.x, cell.y, value);
          final probability = value == 2 ? 0.9 : 0.1;
          final score = _expectimax(newBoard, depth - 1, true);
          totalScore += score * probability;
          count++;
        }
      }

      return totalScore / count;
    }
  }

  // 评估棋盘
  static double _evaluateBoard(List<List<int>> board) {
    double score = 0;

    // 1. 空格数量(越多越好)
    final emptyCells = _getEmptyCells(board);
    score += emptyCells.length * 100;

    // 2. 单调性(数字沿边缘递增)
    score += _getMonotonicity(board) * 10;

    // 3. 平滑度(相邻数字相近)
    score += _getSmoothness(board) * 3;

    // 4. 最大值位置(角落最好)
    score += _getCornerBonus(board) * 50;

    return score;
  }

  static int _getMonotonicity(List<List<int>> board) {
    int totals[] = [0, 0, 0, 0]; // 上、下、左、右

    // 左右方向
    for (int r = 0; r < 4; r++) {
      int current = 0;
      for (int c = 1; c < 4; c++) {
        if (board[r][c] > board[r][c - 1]) {
          current++;
        } else if (board[r][c] < board[r][c - 1]) {
          current--;
        }
      }
      totals[2] += current;
      totals[3] -= current;
    }

    // 上下方向
    for (int c = 0; c < 4; c++) {
      int current = 0;
      for (int r = 1; r < 4; r++) {
        if (board[r][c] > board[r - 1][c]) {
          current++;
        } else if (board[r][c] < board[r - 1][c]) {
          current--;
        }
      }
      totals[0] += current;
      totals[1] -= current;
    }

    return totals.reduce(max);
  }

  static double _getSmoothness(List<List<int>> board) {
    double smoothness = 0;

    for (int r = 0; r < 4; r++) {
      for (int c = 0; c < 4; c++) {
        if (board[r][c] != 0) {
          // 检查右边
          if (c + 1 < 4 && board[r][c + 1] != 0) {
            smoothness -= (board[r][c] - board[r][c + 1]).abs();
          }
          // 检查下边
          if (r + 1 < 4 && board[r + 1][c] != 0) {
            smoothness -= (board[r][c] - board[r + 1][c]).abs();
          }
        }
      }
    }

    return smoothness;
  }

  static int _getCornerBonus(List<List<int>> board) {
    // 检查最大值是否在角落
    int maxValue = 0;
    for (int r = 0; r < 4; r++) {
      for (int c = 0; c < 4; c++) {
        if (board[r][c] > maxValue) {
          maxValue = board[r][c];
        }
      }
    }

    if (board[0][0] == maxValue ||
        board[0][3] == maxValue ||
        board[3][0] == maxValue ||
        board[3][3] == maxValue) {
      return maxValue;
    }

    return 0;
  }

  static List<Point> _getEmptyCells(List<List<int>> board) {
    final cells = <Point>[];
    for (int r = 0; r < 4; r++) {
      for (int c = 0; c < 4; c++) {
        if (board[r][c] == 0) {
          cells.add(Point(r, c));
        }
      }
    }
    return cells;
  }

  static (List<List<int>>, bool) _tryMove(List<List<int>> board, String move) {
    switch (move) {
      case 'left':
        return OptimizedMover.moveLeft(board);
      case 'right':
        return OptimizedMover.moveRight(board);
      case 'up':
        return OptimizedMover.moveUp(board);
      case 'down':
        return OptimizedMover.moveDown(board);
      default:
        return (board, false);
    }
  }

  static List<List<int>> _placeTile(
    List<List<int>> board, int x, int y, int value
  ) {
    final newBoard = List.generate(4, (r) => List<int>.from(board[r]));
    newBoard[x][y] = value;
    return newBoard;
  }
}

三、难度平衡设计

3.1 难度级别实现

dart 复制代码
enum GameDifficulty {
  beginner,    // 初学者
  easy,        // 简单
  medium,      // 中等
  hard,        // 困难
  expert,      // 专家
}

class DifficultyConfig {
  final int startingTiles;
  final int max2048Spawn;
  final double fourSpawnRate;

  const DifficultyConfig({
    required this.startingTiles,
    required this.max2048Spawn,
    required this.fourSpawnRate,
  });

  factory DifficultyConfig.fromDifficulty(GameDifficulty difficulty) {
    switch (difficulty) {
      case GameDifficulty.beginner:
        return const DifficultyConfig(
          startingTiles: 3,
          max2048Spawn: 256,
          fourSpawnRate: 0.05,
        );
      case GameDifficulty.easy:
        return const DifficultyConfig(
          startingTiles: 2,
          max2048Spawn: 512,
          fourSpawnRate: 0.1,
        );
      case GameDifficulty.medium:
        return const DifficultyConfig(
          startingTiles: 2,
          max2048Spawn: 1024,
          fourSpawnRate: 0.1,
        );
      case GameDifficulty.hard:
        return const DifficultyConfig(
          startingTiles: 2,
          max2048Spawn: 2048,
          fourSpawnRate: 0.15,
        );
      case GameDifficulty.expert:
        return const DifficultyConfig(
          startingTiles: 2,
          max2048Spawn: 4096,
          fourSpawnRate: 0.2,
        );
    }
  }
}

3.2 动态难度调整

dart 复制代码
class DynamicDifficulty {
  int consecutiveWins = 0;
  int consecutiveLosses = 0;
  GameDifficulty currentDifficulty = GameDifficulty.medium;

  void onGameWin(int moves, int maxTile) {
    consecutiveWins++;
    consecutiveLosses = 0;

    // 如果快速获胜且达到高数字,提升难度
    if (consecutiveWins >= 2 && maxTile >= 2048 && moves < 500) {
      _increaseDifficulty();
    }
  }

  void onGameLoss(int moves, int maxTile) {
    consecutiveLosses++;
    consecutiveWins = 0;

    // 如果快速失败,降低难度
    if (consecutiveLosses >= 2 && maxTile < 512 && moves < 200) {
      _decreaseDifficulty();
    }
  }

  void _increaseDifficulty() {
    final difficulties = GameDifficulty.values;
    final currentIndex = difficulties.indexOf(currentDifficulty);
    if (currentIndex < difficulties.length - 1) {
      currentDifficulty = difficulties[currentIndex + 1];
    }
  }

  void _decreaseDifficulty() {
    final difficulties = GameDifficulty.values;
    final currentIndex = difficulties.indexOf(currentDifficulty);
    if (currentIndex > 0) {
      currentDifficulty = difficulties[currentIndex - 1];
    }
  }
}

四、性能优化

4.1 状态缓存

dart 复制代码
class GameStateCache {
  final Map<String, double> _cache = {};
  static const int maxCacheSize = 10000;

  String _boardToString(List<List<int>> board) {
    return board.map((row) => row.join(',')).join('|');
  }

  double? get(List<List<int>> board) {
    final key = _boardToString(board);
    return _cache[key];
  }

  void set(List<List<int>> board, double value) {
    if (_cache.length >= maxCacheSize) {
      _cache.clear();
    }
    final key = _boardToString(board);
    _cache[key] = value;
  }
}

4.2 位运算优化

使用位运算表示棋盘状态:

dart 复制代码
class BitBoard {
  // 使用64位整数表示4x4棋盘
  // 每个格子用4位表示(0-15对应数字0-15的2^n)
  final int board;

  const BitBoard(this.board);

  int getTile(int row, int col) {
    final shift = (row * 4 + col) * 4;
    return (board >> shift) & 0xF;
  }

  BitBoard setTile(int row, int col, int value) {
    final shift = (row * 4 + col) * 4;
    final mask = 0xF << shift;
    return BitBoard((board & ~mask) | ((value & 0xF) << shift));
  }

  // 快速比较
  bool operator ==(Object other) =>
      other is BitBoard && board == other.board;

  @override
  int get hashCode => board.hashCode;
}

五、总结

本文深入探讨了2048游戏的算法优化:

  1. 合并算法优化:高效的行处理、转置操作
  2. AI实现:期望算法、启发式评估
  3. 难度平衡:多级难度、动态调整
  4. 性能优化:状态缓存、位运算

这些技术不仅适用于2048游戏,也可以应用到其他滑动类游戏中。


欢迎加入开源鸿蒙跨平台社区 : 开源鸿蒙跨平台开发者社区

相关推荐
格林威2 小时前
Baumer相机轴承滚珠缺失检测:用于精密装配验证的 6 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·opencv·算法·计算机视觉·视觉检测·工业相机·堡盟相机
执着2592 小时前
力扣hot100 - 226、翻转二叉树
数据结构·算法·leetcode
-Try hard-2 小时前
排序和查找算法:插入排序、希尔排序、快速排序以及二分查找
数据结构·算法·排序算法
开开心心_Every2 小时前
音频视频转文字工具,离线语音识别免费
人工智能·游戏·微信·pdf·excel·语音识别·memcache
Ivanqhz2 小时前
向量化计算
开发语言·c++·后端·算法·支持向量机·rust
ffqws_2 小时前
进阶搜索:迭代加深搜索(IDS)埃及分数题解
算法·迭代加深
格林威2 小时前
相机的“对焦”和“变焦”,这二者有什么区别?
开发语言·人工智能·数码相机·opencv·算法·计算机视觉·视觉检测
LXS_3572 小时前
常用算法(下)---拷贝、替换、算术生成、集合算法
开发语言·c++·算法·学习方法
历程里程碑2 小时前
Linux19 实现shell基本功能
linux·运维·服务器·算法·elasticsearch·搜索引擎·哈希算法