【C++学习笔记】图论-最短路径Dijkstra算法

前言

这是放假以来的第二篇博文,最近可能月更吧。

作者也是学图论了awa
注意:由于作者刚刚学数论,有错误请友善指正,让我也纠正一下思路错误。

最短路径是什么

Q&A

Q:最短路径到底指什么?

A:一个加权图中从点u到点v经过的边的权值和最小值。

Q:学习最短路径需要什么前置知识?

A:会建图即可。

DJ克斯特拉(Dijkstra)

思考过程

Dijkstra到底是个啥?能吃吗?嗯,真香! 它的实现思路是什么?请看图解(注意,因为作者太粗心,漏掉了点5又懒得改,所以请忽略点5。)

我们先建立一个数组dis,dis[i]代表从1号点到i号点的最短路径,初始dis[1]为0,因为初始点距离自己的最短路径就是0。其他值均赋值一个很大的数,我们暂时叫它INF。

初始我们从某个地方弄来一张图

然后我们从初始点1开始,这个初始点也叫做源点,我们找连接这个点的所有边中,权值最小的那一条,也就是边【1,3】,然后我们发现,dis[3]的值可以更新为dis[1]+边【1,3】的权值,那么我们将它更新为3。

接着我们同样更新点1连接的另外两个点dis[2]和dis[4]。我们通过点1更新它连接的其他点的dis值,这个操作叫做松弛。我们松弛结束后,应将点1标记,表示它已经松弛过了。

我们在未标记的点中找到dis值最小的那一个,对该点进行松弛操作,发现点4的值比dis[3]+边【3,4】的权值要大,更新dis[4]的值为5。点6同理。将点3标记。

我们继续在未标记的点中找dis值最小的那一个,我们找到了4,对点4进行松弛,将dis[7]更改为dis[4]+边【4,7】,也就是12。将点4标记。

找到未标记的、dis值最小的点6,对该点进行松弛,将dis[7]的值改为9。

代码

后面的步骤就不画了,大家都理解了吗?接下来直接上代码。

cpp 复制代码
int n,m,s,t,d[2501];
bool vis[2501];
struct e{
    int t,d;
};
vector<e> g[2501];

其中n代表点的个数,m代表边的条数,s代表起始点(源点),t代表目标点,d就是dis数组,vis记录是否已经对该点进行松弛,g是邻接表,存储了图。

cpp 复制代码
void dijkstra(){
    memset(d,127,sizeof(d));
    memset(vis,0,sizeof(vis));
    d[s]=0;
    for(int i=1;i<=n;i++){
        int k=0,t=1e9;
        for(int j=1;j<=n;j++){
            if(t>d[j]&&vis[j]!=1)t=d[j],k=j;
        }
        vis[k]=1;
        for(int i=0;i<g[k].size();i++){
            int v=g[k][i].t;
            if(d[v]>d[k]+g[k][i].d){
                d[v]=d[k]+g[k][i].d;    
            }
        }
    }
}

先初始化,将除源点外的d值都赋为很大的值(memset是用字节存储,所以int内的最大值为127)。同时将vis统统设为0,表示未访问。然后遍历n次(因为要遍历所有的点),每次找到d值最小且未标记的那个点,然后对该点连接的所有其他点进行松弛操作。

cpp 复制代码
int main(){
    cin>>n>>m>>s>>t;
    for(int i=1;i<=m;i++){
        int u,v,w;
        cin>>u>>v>>w;
        g[u].push_back(e{v,w});
        g[v].push_back(e{u,w});
    }
    dijkstra();
    cout<<d[t]<<endl;
    return 0;
}

读入数据,建图,运用函数,最后输出即可。

优化

以上算法的时间复杂度是O(n^2),对于一些较大的数据会超时,那我们应该怎么优化呢?因为每一次循环都需要找到dis值最小且未访问的值,所以很容易想到堆(优先队列)。

优化后的代码:

cpp 复制代码
struct node{
    int dis,pos;
    bool operator <(const node &x)const{
        return x.dis<dis;
    }
};
priority_queue<node> q;

先建一个优先队列

cpp 复制代码
void dijkstra(){
    memset(d,127,sizeof(d));
    memset(vis,0,sizeof(vis));
    d[s]=0;
    q.push(node{0,s});
    while(q.size()){
        int k=q.top().pos;q.pop();
        if(vis[k])continue;
        vis[k]=1;
        for(int i=0;i<g[k].size();i++){
            int v=g[k][i].t;
            if(d[v]>d[k]+g[k][i].d){
                d[v]=d[k]+g[k][i].d;
                q.push(node{d[v],v});
            }
        }
    }
}

优先队列存储了dis值和该点,每次队头都是最小的dis值且未被访问的点,大大减少了不必要的循环。

结语

老天爷!手已经打废了!点个赞+收藏+关注吧!

Dijkstra虽然没有SPFA好用,但是也是必不可少的一份子,另外,这个算法无法解决有负环的图哦!所以要谨慎看题!不要像我一样被硬控20mins

下次我会发一个SPFA和Bellman算法的,再见喽!

相关推荐
tangchao340勤奋的老年?2 小时前
ADS通信 C++ 设置通知方式读取指定变量
开发语言·c++·算法
试试勇气2 小时前
Linux学习笔记(十四)--进程间通信
linux·笔记·学习
落羽的落羽2 小时前
【Linux系统】从零实现一个简易的shell!
android·java·linux·服务器·c++·人工智能·机器学习
云小逸2 小时前
【Nmap源码学习】Nmap 网络扫描核心技术深度解析:从协议识别到性能优化
网络·学习·性能优化
代码游侠2 小时前
学习笔记——Linux字符设备驱动
linux·运维·arm开发·嵌入式硬件·学习·架构
1104.北光c°2 小时前
【黑马点评项目笔记 | 优惠券秒杀篇】构建高并发秒杀系统
java·开发语言·数据库·redis·笔记·spring·nosql
潇冉沐晴2 小时前
div2 1064补题笔记(A~E)
笔记·算法
Trouvaille ~2 小时前
【Linux】UDP Socket编程实战(三):多线程聊天室与线程安全
linux·服务器·网络·c++·安全·udp·socket
Jaxson Lin2 小时前
Java编程进阶:智能仿真无人机项目3.0
java·笔记·无人机