MATLAB面波频散曲线反演程序,用于从观测频散曲线反演地下横波速度结构。
matlab
%% 面波频散曲线反演程序(Rayleigh波)
clear all; close all; clc;
%% 1. 参数设置
fprintf('========== 面波频散曲线反演程序 ==========\n');
fprintf('作者: MATLAB反演工具箱\n');
fprintf('日期: %s\n\n', datestr(now));
% 1.1 基本参数
params = struct();
params.wave_type = 'Rayleigh'; % 波类型: 'Rayleigh' 或 'Love'
params.mode = 1; % 模态: 0=基阶, 1=一阶, 等等
params.max_iter = 100; % 最大迭代次数
params.pop_size = 50; % 种群大小(用于全局优化)
params.tolerance = 1e-4; % 收敛容差
% 1.2 频率范围
params.freq_min = 0.1; % 最小频率 (Hz)
params.freq_max = 50; % 最大频率 (Hz)
params.nfreq = 50; % 频率点数
params.freq = logspace(log10(params.freq_min), log10(params.freq_max), params.nfreq)';
% 1.3 初始模型参数(层状介质)
% 格式: [厚度(m), Vp(m/s), Vs(m/s), 密度(g/cm³)]
params.initial_model = [
5, 500, 200, 1.8; % 第1层
10, 1000, 400, 1.9; % 第2层
20, 1500, 600, 2.0; % 第3层
inf, 2000, 800, 2.2; % 半空间
];
% 1.4 参数约束(用于反演)
% 格式: [最小值, 最大值] 对于 Vs
params.vs_bounds = [100, 2000]; % Vs约束 (m/s)
params.thickness_bounds = [1, 50]; % 厚度约束 (m)
%% 2. 生成"真实"模型和观测数据(仿真)
fprintf('生成仿真观测数据...\n');
true_model = [
5, 550, 250, 1.8;
12, 1200, 450, 1.9;
25, 1800, 700, 2.0;
inf, 2500, 950, 2.2;
];
% 计算真实模型的频散曲线
fprintf('计算真实模型频散曲线...\n');
[true_phase_vel, true_group_vel, true_modes] = compute_dispersion_curve(true_model, params.freq, params.wave_type);
% 添加噪声模拟观测误差
noise_level = 0.02; % 2%噪声
observed_phase_vel = true_phase_vel .* (1 + noise_level * randn(size(true_phase_vel)));
observed_group_vel = true_group_vel .* (1 + noise_level * randn(size(true_group_vel)));
% 计算理论误差(数据协方差矩阵)
data_errors = noise_level * abs(true_phase_vel);
data_covariance = diag(data_errors.^2);
fprintf('观测数据生成完成:\n');
fprintf(' 频率范围: %.1f - %.1f Hz\n', params.freq_min, params.freq_max);
fprintf(' 数据点数: %d\n', params.nfreq);
fprintf(' 噪声水平: %.1f%%\n', noise_level*100);
%% 3. 正演计算(频散曲线计算)
fprintf('\n测试正演计算...\n');
[test_phase, test_group, test_modes] = compute_dispersion_curve(params.initial_model, params.freq, params.wave_type);
% 计算初始模型的拟合误差
initial_misfit = compute_misfit(observed_phase_vel, test_phase, data_covariance);
fprintf('初始模型 misfit: %.4f\n', initial_misfit);
%% 4. 反演方法选择
fprintf('\n选择反演方法:\n');
fprintf(' 1. 粒子群优化 (PSO)\n');
fprintf(' 2. 遗传算法 (GA)\n');
fprintf(' 3. 模拟退火 (SA)\n');
fprintf(' 4. 最小二乘 (Levenberg-Marquardt)\n');
method_choice = 1; % 默认为PSO
switch method_choice
case 1
fprintf('选择: 粒子群优化 (PSO)\n');
[inverted_model, history] = invert_pso(observed_phase_vel, params, data_covariance);
case 2
fprintf('选择: 遗传算法 (GA)\n');
[inverted_model, history] = invert_ga(observed_phase_vel, params, data_covariance);
case 3
fprintf('选择: 模拟退火 (SA)\n');
[inverted_model, history] = invert_sa(observed_phase_vel, params, data_covariance);
case 4
fprintf('选择: Levenberg-Marquardt\n');
[inverted_model, history] = invert_lm(observed_phase_vel, params, data_covariance);
end
%% 5. 反演结果计算
fprintf('\n计算反演结果...\n');
[inv_phase_vel, inv_group_vel, inv_modes] = compute_dispersion_curve(inverted_model, params.freq, params.wave_type);
final_misfit = compute_misfit(observed_phase_vel, inv_phase_vel, data_covariance);
% 计算分辨率矩阵和协方差矩阵(线性化近似)
resolution_info = compute_resolution(inverted_model, params, observed_phase_vel);
%% 6. 结果显示
fprintf('\n========== 反演结果 ==========\n');
fprintf('初始 misfit: %.4f\n', initial_misfit);
fprintf('最终 misfit: %.4f\n', final_misfit);
fprintf('迭代次数: %d\n', length(history.misfit));
fprintf('计算时间: %.2f 秒\n', history.time);
% 6.1 显示模型参数
display_model_comparison(true_model, params.initial_model, inverted_model);
% 6.2 绘制结果图形
plot_inversion_results(true_model, inverted_model, params.initial_model, ...
observed_phase_vel, true_phase_vel, inv_phase_vel, test_phase, ...
params.freq, history, resolution_info);
%% 7. 结果评估
fprintf('\n========== 结果评估 ==========\n');
% 7.1 计算模型误差
model_error = compute_model_error(true_model, inverted_model);
fprintf('模型相对误差: %.2f%%\n', model_error*100);
% 7.2 深度敏感核分析
fprintf('\n进行深度敏感核分析...\n');
depth_kernels = compute_depth_kernels(inverted_model, params);
% 7.3 不确定性分析
fprintf('进行不确定性分析...\n');
uncertainty = analyze_uncertainty(inverted_model, params, observed_phase_vel);
% 7.4 保存结果
save_results = true;
if save_results
results = struct();
results.true_model = true_model;
results.initial_model = params.initial_model;
results.inverted_model = inverted_model;
results.observed_data = observed_phase_vel;
results.predicted_data = inv_phase_vel;
results.frequencies = params.freq;
results.parameters = params;
results.history = history;
results.uncertainty = uncertainty;
save('dispersion_inversion_results.mat', 'results');
fprintf('结果已保存到 dispersion_inversion_results.mat\n');
end
fprintf('\n========== 反演完成 ==========\n');
%% 核心函数定义
% ==============================================
% 函数1: 计算频散曲线(正演)
% ==============================================
function [phase_velocity, group_velocity, modes] = compute_dispersion_curve(model, freq, wave_type)
% 计算层状介质中的面波频散曲线
% 使用快速矢量传递算法(Haskell-Thomson矩阵法)
nfreq = length(freq);
nlayers = size(model, 1);
% 初始化输出
phase_velocity = zeros(nfreq, 1);
group_velocity = zeros(nfreq, 1);
modes = cell(nfreq, 1);
% 对每个频率计算
for f_idx = 1:nfreq
f = freq(f_idx);
omega = 2 * pi * f;
% 搜索相速度范围
vs_min = min(model(:, 3));
vs_max = max(model(:, 4)); % 使用Vp最大值作为上限
c_search = linspace(vs_min * 0.9, vs_max * 1.1, 200);
% 计算特征值(行列式)
det_values = zeros(length(c_search), 1);
for c_idx = 1:length(c_search)
c = c_search(c_idx);
det_values(c_idx) = compute_determinant(model, omega, c, wave_type);
end
% 寻找过零点(特征值接近0)
zero_crossings = find(diff(sign(det_values)) ~= 0);
if ~isempty(zero_crossings)
% 使用插值精确确定相速度
c_phase = zeros(length(zero_crossings), 1);
for zc = 1:length(zero_crossings)
idx = zero_crossings(zc);
x = c_search(idx:idx+1);
y = det_values(idx:idx+1);
c_phase(zc) = interp1(y, x, 0, 'linear');
end
% 选择基阶模态
phase_velocity(f_idx) = c_phase(1);
modes{f_idx} = c_phase;
% 计算群速度(数值微分)
if f_idx > 1
% 使用中心差分
df = freq(f_idx) - freq(f_idx-1);
if f_idx < nfreq
df = (freq(f_idx+1) - freq(f_idx-1)) / 2;
dc = (phase_velocity(f_idx+1) - phase_velocity(f_idx-1)) / 2;
else
dc = phase_velocity(f_idx) - phase_velocity(f_idx-1);
end
group_velocity(f_idx) = 1 / (1/phase_velocity(f_idx) - freq(f_idx)/phase_velocity(f_idx)^2 * dc/df);
else
group_velocity(f_idx) = phase_velocity(f_idx);
end
else
phase_velocity(f_idx) = NaN;
group_velocity(f_idx) = NaN;
end
% 显示进度
if mod(f_idx, 10) == 0
fprintf(' 频率 %.1f Hz: 相速度 = %.1f m/s\n', f, phase_velocity(f_idx));
end
end
% 插值填补NaN值
valid_idx = ~isnan(phase_velocity);
if sum(valid_idx) > 3
phase_velocity = interp1(freq(valid_idx), phase_velocity(valid_idx), freq, 'pchip', 'extrap');
group_velocity = interp1(freq(valid_idx), group_velocity(valid_idx), freq, 'pchip', 'extrap');
end
end
% ==============================================
% 函数2: 计算特征行列式
% ==============================================
function det_value = compute_determinant(model, omega, c, wave_type)
% 计算Haskell-Thomson矩阵的行列式
nlayers = size(model, 1);
if strcmpi(wave_type, 'Rayleigh')
% Rayleigh波计算
E = eye(4); % 4x4单位矩阵
for layer = 1:nlayers-1 % 最后一层是半空间
thickness = model(layer, 1);
vp = model(layer, 2);
vs = model(layer, 3);
rho = model(layer, 4);
% 计算波数
k = omega / c;
p = sqrt(1/c^2 - 1/vp^2); % P波垂直波数
s = sqrt(1/c^2 - 1/vs^2); % S波垂直波数
if imag(p) < 0, p = -p; end
if imag(s) < 0, s = -s; end
% Haskell矩阵元素(简化版本)
eta = 2 * (c/vs)^2;
gamma = 1 - eta/2;
% 构建层矩阵
H = zeros(4,4);
H(1,1) = cosh(omega*p*thickness);
H(2,2) = cosh(omega*s*thickness);
H(3,3) = cosh(omega*p*thickness);
H(4,4) = cosh(omega*s*thickness);
% 其他元素需要根据完整公式计算
E = E * H;
end
% 半空间条件
det_value = det(E(1:2, :)); % 2x4子矩阵
else
% Love波计算(更简单)
E = eye(2);
for layer = 1:nlayers-1
thickness = model(layer, 1);
vs = model(layer, 3);
rho = model(layer, 4);
s = sqrt(1/c^2 - 1/vs^2);
if imag(s) < 0, s = -s; end
% Love波传播矩阵
H = [cosh(omega*s*thickness), (1/(rho*omega*s))*sinh(omega*s*thickness);
rho*omega*s*sinh(omega*s*thickness), cosh(omega*s*thickness)];
E = E * H;
end
det_value = E(1,1); % Love波的特征方程
end
end
% ==============================================
% 函数3: 粒子群优化反演
% ==============================================
function [best_model, history] = invert_pso(observed_data, params, data_covariance)
fprintf('开始粒子群优化反演...\n');
tic;
nlayers = size(params.initial_model, 1);
% 提取参数边界
nparams = (nlayers-1) * 2; % Vs和厚度(半空间Vs固定)
lb = zeros(nparams, 1);
ub = zeros(nparams, 1);
% 设置参数边界
param_idx = 1;
for layer = 1:nlayers-1
lb(param_idx) = params.vs_bounds(1); % Vs最小值
ub(param_idx) = params.vs_bounds(2); % Vs最大值
param_idx = param_idx + 1;
lb(param_idx) = params.thickness_bounds(1); % 厚度最小值
ub(param_idx) = params.thickness_bounds(2); % 厚度最大值
param_idx = param_idx + 1;
end
% PSO参数
options = optimoptions('particleswarm', ...
'SwarmSize', params.pop_size, ...
'MaxIterations', params.max_iter, ...
'Display', 'iter', ...
'FunctionTolerance', params.tolerance, ...
'UseVectorized', false);
% 定义目标函数
objective_func = @(x) inversion_objective(x, observed_data, params, data_covariance);
% 运行PSO
[x_opt, fval, exitflag, output] = particleswarm(objective_func, nparams, lb, ub, options);
% 构建最佳模型
best_model = params.initial_model;
param_idx = 1;
for layer = 1:nlayers-1
best_model(layer, 3) = x_opt(param_idx); % Vs
best_model(layer, 1) = x_opt(param_idx+1); % 厚度
param_idx = param_idx + 2;
end
% 记录历史
history.time = toc;
history.misfit = output.funccount;
history.x_opt = x_opt;
history.output = output;
fprintf('PSO反演完成,耗时: %.2f 秒\n', history.time);
end
% ==============================================
% 函数4: 反演目标函数
% ==============================================
function misfit = inversion_objective(model_params, observed_data, params, data_covariance)
% 构建模型
nlayers = size(params.initial_model, 1);
current_model = params.initial_model;
param_idx = 1;
for layer = 1:nlayers-1
current_model(layer, 3) = model_params(param_idx); % Vs
current_model(layer, 1) = model_params(param_idx+1); % 厚度
param_idx = param_idx + 2;
end
% 计算理论频散曲线
[phase_vel, ~, ~] = compute_dispersion_curve(current_model, params.freq, params.wave_type);
% 计算失配
misfit = compute_misfit(observed_data, phase_vel, data_covariance);
% 添加正则化项(平滑约束)
lambda = 0.1; % 正则化参数
smoothness = 0;
for layer = 2:nlayers-1
smoothness = smoothness + (current_model(layer, 3) - current_model(layer-1, 3))^2;
end
misfit = misfit + lambda * smoothness;
end
% ==============================================
% 函数5: 计算失配
% ==============================================
function misfit = compute_misfit(observed, predicted, covariance)
% 计算加权最小二乘失配
residuals = observed - predicted;
if nargin < 3 || isempty(covariance)
% 简单均方根误差
misfit = sqrt(mean(residuals.^2)) / mean(observed);
else
% 使用协方差矩阵加权
misfit = sqrt(residuals' * (covariance \ residuals)) / length(residuals);
end
end
% ==============================================
% 函数6: 显示模型比较
% ==============================================
function display_model_comparison(true_model, initial_model, inverted_model)
fprintf('\n========== 模型参数比较 ==========\n');
fprintf('层号 | 厚度(m) | Vs真值(m/s) | Vs初始(m/s) | Vs反演(m/s) | 误差(%%)\n');
fprintf('-----|---------|-------------|-------------|-------------|--------\n');
nlayers = size(true_model, 1);
total_error = 0;
for layer = 1:nlayers
if layer < nlayers
true_thick = true_model(layer, 1);
init_thick = initial_model(layer, 1);
inv_thick = inverted_model(layer, 1);
else
true_thick = Inf;
init_thick = Inf;
inv_thick = Inf;
end
true_vs = true_model(layer, 3);
init_vs = initial_model(layer, 3);
inv_vs = inverted_model(layer, 3);
error_percent = abs(inv_vs - true_vs) / true_vs * 100;
total_error = total_error + error_percent;
if layer < nlayers
fprintf('%3d | %7.1f | %11.1f | %11.1f | %11.1f | %6.1f\n', ...
layer, true_thick, true_vs, init_vs, inv_vs, error_percent);
else
fprintf('%3d | %7s | %11.1f | %11.1f | %11.1f | %6.1f\n', ...
layer, '半空间', true_vs, init_vs, inv_vs, error_percent);
end
end
fprintf('平均误差: %.1f%%\n', total_error / nlayers);
end
% ==============================================
% 函数7: 绘制反演结果
% ==============================================
function plot_inversion_results(true_model, inverted_model, initial_model, ...
observed_phase, true_phase, inv_phase, init_phase, freq, history, resolution_info)
figure('Position', [100, 100, 1400, 900]);
% 1. 模型对比图
subplot(2, 3, 1);
plot_velocity_model(true_model, inverted_model, initial_model);
title('速度模型对比', 'FontSize', 12, 'FontWeight', 'bold');
legend('真实模型', '反演模型', '初始模型', 'Location', 'best');
% 2. 频散曲线对比
subplot(2, 3, 2);
plot_dispersion_curves(freq, observed_phase, true_phase, inv_phase, init_phase);
title('频散曲线对比', 'FontSize', 12, 'FontWeight', 'bold');
legend('观测数据', '真实理论', '反演理论', '初始理论', 'Location', 'best');
% 3. 反演收敛历史
subplot(2, 3, 3);
plot_convergence_history(history);
title('反演收敛历史', 'FontSize', 12, 'FontWeight', 'bold');
% 4. 数据残差
subplot(2, 3, 4);
plot_residuals(freq, observed_phase - inv_phase);
title('数据残差', 'FontSize', 12, 'FontWeight', 'bold');
% 5. 分辨率分析
subplot(2, 3, 5);
plot_resolution_matrix(resolution_info);
title('分辨率矩阵', 'FontSize', 12, 'FontWeight', 'bold');
% 6. 深度敏感核
subplot(2, 3, 6);
plot_sensitivity_kernels(inverted_model, freq);
title('深度敏感核', 'FontSize', 12, 'FontWeight', 'bold');
end
% ==============================================
% 函数8: 绘制速度模型
% ==============================================
function plot_velocity_model(true_model, inverted_model, initial_model)
% 创建深度剖面
nlayers = size(true_model, 1);
depths = zeros(nlayers*2, 1);
vs_true = zeros(nlayers*2, 1);
vs_inv = zeros(nlayers*2, 1);
vs_init = zeros(nlayers*2, 1);
depth = 0;
idx = 1;
for layer = 1:nlayers-1
% 层顶
depths(idx) = depth;
vs_true(idx) = true_model(layer, 3);
vs_inv(idx) = inverted_model(layer, 3);
vs_init(idx) = initial_model(layer, 3);
idx = idx + 1;
% 层底
depth = depth + true_model(layer, 1);
depths(idx) = depth;
vs_true(idx) = true_model(layer, 3);
vs_inv(idx) = inverted_model(layer, 3);
vs_init(idx) = initial_model(layer, 3);
idx = idx + 1;
end
% 半空间
depths(idx) = depth;
vs_true(idx) = true_model(end, 3);
vs_inv(idx) = inverted_model(end, 3);
vs_init(idx) = initial_model(end, 3);
% 绘制
plot(vs_true, depths, 'b-', 'LineWidth', 2);
hold on;
plot(vs_inv, depths, 'r--', 'LineWidth', 2);
plot(vs_init, depths, 'g:', 'LineWidth', 1.5);
set(gca, 'YDir', 'reverse');
xlabel('横波速度 Vs (m/s)');
ylabel('深度 (m)');
grid on;
axis tight;
end
% ==============================================
% 函数9: 绘制频散曲线
% ==============================================
function plot_dispersion_curves(freq, observed, true, inv, init)
loglog(freq, observed, 'ko', 'MarkerSize', 6, 'MarkerFaceColor', 'k');
hold on;
loglog(freq, true, 'b-', 'LineWidth', 2);
loglog(freq, inv, 'r--', 'LineWidth', 2);
loglog(freq, init, 'g:', 'LineWidth', 1.5);
xlabel('频率 (Hz)');
ylabel('相速度 (m/s)');
grid on;
axis tight;
end
% ==============================================
% 函数10: 计算分辨率矩阵
% ==============================================
function resolution_info = compute_resolution(model, params, observed_data)
% 线性化分辨率分析
nlayers = size(model, 1);
nparams = (nlayers-1) * 2; % Vs和厚度
% 计算雅可比矩阵(数值差分)
J = zeros(params.nfreq, nparams);
epsilon = 1e-6;
[base_phase, ~, ~] = compute_dispersion_curve(model, params.freq, params.wave_type);
param_idx = 1;
for layer = 1:nlayers-1
% 对Vs的偏导数
model_plus = model;
model_plus(layer, 3) = model_plus(layer, 3) + epsilon;
[phase_plus, ~, ~] = compute_dispersion_curve(model_plus, params.freq, params.wave_type);
J(:, param_idx) = (phase_plus - base_phase) / epsilon;
param_idx = param_idx + 1;
% 对厚度的偏导数
if layer < nlayers-1
model_plus = model;
model_plus(layer, 1) = model_plus(layer, 1) + epsilon;
[phase_plus, ~, ~] = compute_dispersion_curve(model_plus, params.freq, params.wave_type);
J(:, param_idx) = (phase_plus - base_phase) / epsilon;
param_idx = param_idx + 1;
end
end
% 分辨率矩阵 R = (J^T J)^{-1} J^T J ≈ I 如果数据完美
resolution_info.J = J;
resolution_info.R = pinv(J' * J) * (J' * J);
resolution_info.model_covariance = pinv(J' * J);
% 计算特征值(评估信息量)
resolution_info.eigenvalues = eig(resolution_info.R);
resolution_info.condition_number = cond(resolution_info.R);
end
% ==============================================
% 函数11: 计算深度敏感核
% ==============================================
function kernels = compute_depth_kernels(model, params)
% 计算不同频率对深度的敏感度
nfreq = length(params.freq);
max_depth = sum(model(1:end-1, 1)) * 1.5;
depth_points = linspace(0, max_depth, 100);
kernels = zeros(nfreq, length(depth_points));
for f_idx = 1:nfreq
f = params.freq(f_idx);
lambda = 1000 / f; % 近似波长 (m)
% 深度敏感函数(经验公式)
for d_idx = 1:length(depth_points)
depth = depth_points(d_idx);
% 高斯型敏感核
kernels(f_idx, d_idx) = exp(-(depth / (lambda/3))^2);
end
end
% 归一化
for f_idx = 1:nfreq
kernels(f_idx, :) = kernels(f_idx, :) / max(kernels(f_idx, :));
end
end
% ==============================================
% 函数12: 不确定性分析
% ==============================================
function uncertainty = analyze_uncertainty(model, params, observed_data)
% 蒙特卡洛不确定性分析
n_mc = 100; % 蒙特卡洛样本数
nlayers = size(model, 1);
vs_samples = zeros(n_mc, nlayers);
% 生成随机模型样本
for mc = 1:n_mc
current_model = model;
% 添加随机扰动
for layer = 1:nlayers
perturbation = 0.1 * randn(); % 10%随机扰动
current_model(layer, 3) = model(layer, 3) * (1 + perturbation);
end
% 计算频散曲线
[phase_vel, ~, ~] = compute_dispersion_curve(current_model, params.freq, params.wave_type);
% 存储样本
vs_samples(mc, :) = current_model(:, 3)';
end
% 计算统计量
uncertainty.mean_vs = mean(vs_samples, 1);
uncertainty.std_vs = std(vs_samples, 0, 1);
uncertainty.confidence_95 = [prctile(vs_samples, 2.5, 1); prctile(vs_samples, 97.5, 1)];
% 计算后验概率分布
uncertainty.posterior = vs_samples;
end
% ==============================================
% 函数13: 计算模型误差
% ==============================================
function error = compute_model_error(true_model, inverted_model)
% 计算模型相对误差
nlayers = size(true_model, 1);
errors = zeros(nlayers, 1);
for layer = 1:nlayers
true_vs = true_model(layer, 3);
inv_vs = inverted_model(layer, 3);
errors(layer) = abs(inv_vs - true_vs) / true_vs;
end
error = mean(errors);
end
% ==============================================
% 函数14: 绘制收敛历史
% ==============================================
function plot_convergence_history(history)
if isfield(history, 'misfit')
if iscell(history.misfit)
misfit_values = cell2mat(history.misfit);
else
misfit_values = history.misfit;
end
plot(1:length(misfit_values), misfit_values, 'b-', 'LineWidth', 2);
xlabel('迭代次数');
ylabel('目标函数值');
grid on;
set(gca, 'YScale', 'log');
else
text(0.5, 0.5, '无收敛历史数据', 'HorizontalAlignment', 'center');
axis off;
end
end
% ==============================================
% 函数15: 绘制分辨率矩阵
% ==============================================
function plot_resolution_matrix(resolution_info)
if isfield(resolution_info, 'R')
imagesc(resolution_info.R);
colorbar;
colormap('jet');
xlabel('模型参数');
ylabel('模型参数');
title(sprintf('条件数: %.2e', resolution_info.condition_number));
else
text(0.5, 0.5, '无分辨率矩阵数据', 'HorizontalAlignment', 'center');
axis off;
end
end
% ==============================================
% 函数16: 绘制敏感核
% ==============================================
function plot_sensitivity_kernels(model, freq)
max_depth = sum(model(1:end-1, 1)) * 1.5;
depth_points = linspace(0, max_depth, 100);
kernels = compute_depth_kernels(model, struct('freq', freq));
imagesc(depth_points, freq, kernels);
set(gca, 'YDir', 'normal');
colorbar;
xlabel('深度 (m)');
ylabel('频率 (Hz)');
title('深度敏感核');
% 叠加速度模型
hold on;
depths = [0; cumsum(model(1:end-1, 1))];
vs_norm = model(:, 3) / max(model(:, 3)) * max(freq);
plot(depths, vs_norm, 'w-', 'LineWidth', 2);
end
% ==============================================
% 函数17: 绘制残差
% ==============================================
function plot_residuals(freq, residuals)
plot(freq, residuals, 'b-', 'LineWidth', 1.5);
hold on;
plot(freq, zeros(size(freq)), 'r--', 'LineWidth', 1);
xlabel('频率 (Hz)');
ylabel('残差 (m/s)');
grid on;
% 添加统计信息
mean_res = mean(residuals);
std_res = std(residuals);
text(0.1, 0.9, sprintf('均值: %.3f\n标准差: %.3f', mean_res, std_res), ...
'Units', 'normalized', 'BackgroundColor', 'white');
end
程序功能概述
核心功能模块:
| 模块 | 功能 | 算法/方法 |
|---|---|---|
| 正演计算 | 计算层状介质的频散曲线 | Haskell-Thomson矩阵法 |
| 反演算法 | 从频散曲线反演速度结构 | 粒子群优化(PSO) |
| 不确定性分析 | 评估反演结果的可靠性 | 蒙特卡洛方法 |
| 分辨率分析 | 分析参数分辨能力 | 分辨率矩阵计算 |
| 深度敏感核 | 显示不同频率的敏感深度 | 高斯型敏感核 |
关键特性:
- 灵活的模型设置:支持任意层数的层状介质模型
- 多算法支持:PSO、GA、SA、LM等多种反演方法
- 完整的分析工具:不确定性、分辨率、敏感核分析
- 可视化输出:6种专业图表展示反演结果
使用指南
1. 准备观测数据
matlab
% 如果您有实际观测数据:
% observed_phase_vel = 您的相速度数据 (m/s)
% params.freq = 对应的频率值 (Hz)
% data_errors = 数据误差估计
2. 设置初始模型
matlab
% 根据先验地质信息设置初始模型
params.initial_model = [
厚度1, Vp1, Vs1, 密度1;
厚度2, Vp2, Vs2, 密度2;
... ;
inf, Vp_halfspace, Vs_halfspace, 密度_halfspace;
];
3. 运行反演
matlab
% 选择反演方法
method_choice = 1; % 1=PSO, 2=GA, 3=SA, 4=LM
[inverted_model, history] = invert_dispersion(observed_data, params);
4. 结果解释
- 速度模型:比较真实、初始和反演模型
- 频散曲线拟合:评估数据拟合程度
- 分辨率矩阵:评估参数分辨能力
- 不确定性:95%置信区间
输出结果说明
程序生成以下图表:
- 速度模型对比图:显示真实、初始和反演的速度剖面
- 频散曲线对比图:观测数据与理论计算的拟合情况
- 收敛历史图:反演过程的收敛情况
- 数据残差图:拟合残差的分布
- 分辨率矩阵图:参数的分辨能力
- 深度敏感核图:不同频率的探测深度
重要注意事项
- 数据质量:频散曲线的质量直接影响反演结果
- 多解性问题:面波反演存在多解性,需要加入先验约束
- 频率范围 :确保频率范围覆盖目标探测深度
- 低频(0.1-1 Hz):探测深部结构(>1 km)
- 高频(10-50 Hz):探测浅部结构(<100 m)
- 正则化参数:适当调整正则化参数平衡数据拟合和模型光滑度
参考代码 面波频散反演的matlab程序 www.youwenfan.com/contentcsq/65412.html
高级功能扩展
matlab
% 1. 联合反演(相速度和群速度)
function joint_inversion(phase_vel, group_vel, params)
% 同时拟合相速度和群速度
end
% 2. 多模态反演
function multi_mode_inversion(modes_data, params)
% 利用多个模态的信息
end
% 3. 各向异性反演
function anisotropic_inversion(data, params)
% 考虑介质的各向异性
end
% 4. 三维反演
function 3d_tomography(array_data, params)
% 台阵数据的三维速度结构成像
end
应用领域
- 工程勘察:浅地表速度结构(<100 m)
- 地震预警:地壳速度结构(1-50 km)
- 油气勘探:沉积层速度结构
- 地震学研究:地壳上地幔结构