21.WSL中部署gnina分子对接程序ds

一、项目说明

1.1 仓库地址

  • GIT URL: https://github.com/huojichuanqi/ds#

1.2 项目介绍

gnina(发音为 NEE-na)是一个分子对接程序,集成了使用卷积神经网络对配体进行评分和优化的支持。它是 smina 的一个分支,而 smina 是 AutoDock Vina 的一个分支。

二、安装部署

2.1 环境准备

  • 操作系统:Ubuntu22.04
  • CUDA:>12.0
  • cmake: > 2.25 (Ubuntu默认的是2.22.1,需要修改CMakeLists.txt)
  • python:>=3.10.12
  • torch: 需要和cuda的版本一致
    • cuda12.4: pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
    • cuda12.6: pip install torch==2.7.1 torchvision==0.22.1 torchaudio==2.7.1 --index-url https://download.pytorch.org/whl/cu126
  • wsl能访问github(宿主机配置好代理,关闭防火墙)

2.2 开始编译

2.2.1 安装依赖库
bash 复制代码
apt update -y
apt-get install build-essential git cmake wget libboost-all-dev libeigen3-dev libgoogle-glog-dev libprotobuf-dev protobuf-compiler libhdf5-dev libatlas-base-dev python3-dev librdkit-dev python3-numpy python3-pip python3-pytest libjsoncpp-dev  libxml2-dev
apt upgrade cmake

## 安装cuda
sudo apt-get remove nvidia-cuda-toolkit
wget https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run
chmod 700 cuda_12.4.0_550.54.14_linux.run
sudo sh cuda_12.4.0_550.54.14_linux.run

## 安装cudnn
wget https://developer.download.nvidia.com/compute/cudnn/9.0.0/local_installers/cudnn-local-repo-ubuntu2204-9.0.0_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2204-9.0.0_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-9.0.0/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cudnn-cuda-12
2.2.2 安装 OpenBabel3

注意,在 3.1.1 及更早版本中存在键级确定错误。

bash 复制代码
git clone https://github.com/dkoes/openbabel.git
cd openbabel
mkdir build
cd build
cmake -DWITH_MAEPARSER=OFF -DWITH_COORDGEN=OFF -DPYTHON_BINDINGS=ON -DRUN_SWIG=ON ..
make
make install
2.2.3 安装 gnina
bash 复制代码
git clone https://github.com/gnina/gnina.git
cd gnina
mkdir build
cd build
cmake .. -DCMAKE_CUDA_ARCHITECTURES=75
make -j8
sudo make install

cmake .. \
  -DOPENBABEL3_INCLUDE_DIR=/usr/local/include/openbabel3 \
  -DOPENBABEL3_LIBRARIES= /usr/local/lib/libopenbabel.so \
  -DJSONCPP_INCLUDE_DIR=/usr/include/jsoncpp \
  -DJSONCPP_LIBRARY=/usr/lib/x86_64-linux-gnu/libjsoncpp.so \
  -DBoost_USE_STATIC_LIBS=OFF

gnina编译的时候对环境有要求,如果cmake的版本低于3.25,那么修改根目录的CMakeLists.txt的第一行cmake_minimum_required(VERSION 3.25)为实际的cmake的版本号,cmake的版本号可以通过cmake --version查看。

第二个要修改的也是根目录的CMakeLists.txt,在76行,将set(CMAKE_CUDA_ARCHITECTURES "all-major")改为实际的架构版本,实际的查看命令为nvidia-smi --query-gpu=compute_cap --format=csv

cmakelist 复制代码
 #set(CMAKE_CUDA_ARCHITECTURES "all-major")
set(CMAKE_CUDA_ARCHITECTURES "75")
相关推荐
诗词在线1 小时前
孟浩然诗作数字化深度实战:诗词在线的意象挖掘、检索优化与多场景部署
大数据·人工智能·算法
冬奇Lab2 小时前
一天一个开源项目(第23篇):PageLM - 开源 AI 教育平台,把学习材料变成互动资源
人工智能·开源
汐汐咯2 小时前
残差块学习笔记
人工智能
式5162 小时前
深度学习常见问题
人工智能·深度学习
天竺鼠不该去劝架2 小时前
RPA 平台选型指南(2026):金智维 vs 来也RPA vs 艺赛旗 vs 阿里云 RPA 深度对比
大数据·数据库·人工智能
aircrushin2 小时前
具身智能开源生态:小米机器人VLA模型如何推动物理AI产业化?
人工智能·机器人
DN20202 小时前
AI销售:从不迟到早退,永远秒回,您的忠实员工
人工智能·python
人工智能AI技术2 小时前
手机就是你的AI实验室:AutoGLM开源实战,用智谱GLM-4.7控制手机完成自动打卡
人工智能