VeRL 框架 RL 微调大语言模型,algorithm.use_pf_ppo 参数详解

verl 框架 里,use_pf_ppo(完整路径通常是 algorithm.use_pf_ppo)是一个开关参数,用来控制是否启用 PF‑PPO(Preference Feedback PPO,偏好反馈 PPO) 这套额外的重加权机制。

1 这个参数具体是什么意思?

一句话: use_pf_ppo 表示 "是否启用偏好反馈 PPO 重采样/重加权机制"

  • False(默认): 只用普通 PPO 流程训练,不额外做 PF‑PPO 的重加权。
  • True: 在计算完优势函数/回报之后,会额外调用一个 PF‑PPO 的函数
    compute_pf_ppo_reweight_data(...) 对当前 batch 做重加权 + 重采样,再用这个"重采样后的数据"去做 PPO 更新。

2 启用 use_pf_ppo 后大致会发生什么?

algorithm.use_pf_ppo = True 时,代码会走进类似下面的逻辑(在 PPO trainer 的 compute_advantage 流程中):

python 复制代码
if config.get("use_pf_ppo", False):
    data = core_algos.compute_pf_ppo_reweight_data(
        data,
        config.pf_ppo.reweight_method,
        config.pf_ppo.weight_pow,
    )

compute_pf_ppo_reweight_data 的核心行为是:

  1. 使用 data.batch["token_level_scores"](通常是 reward 模型给出的 token 级得分)对每条样本算一个总分。
  2. 根据你在配置里设的:
    • algorithm.pf_ppo.reweight_methodpow / max_min / max_random
    • algorithm.pf_ppo.weight_pow:在 pow 模式下的幂次
      把这些分数转成采样权重
    • pow:权重 ∝ |score|^weight_pow
    • max_min:只保留得分最大/最小的样本(权重 1,其它 0)
    • max_random:最大得分权重大一点,其它给一个较小常数权重
  3. 按这些权重对 batch 里的样本做 有放回重采样,生成一个"重采样后的 batch"。
  4. 用这个重采样后的数据继续做 PPO 的 loss 计算与参数更新。

这样就可以:

  • 放大高质量/高置信度样本的影响
  • 削弱噪声奖励、异常样本的影响

非常适合 RLHF / RL from preference 这类奖励信号可能比较 noisy 的场景。

3 配置大致长什么样?

在 YAML 配置里通常是类似这样:

yaml 复制代码
algorithm:
  use_pf_ppo: True            # 是否启用偏好反馈 PPO
  pf_ppo:
    reweight_method: pow      # 可选: pow, max_min, max_random
    weight_pow: 2.0           # 在 pow 模式下的指数

命令行覆盖时也可以这么用(示例):

bash 复制代码
python -m verl.trainer.main_ppo \
  algorithm.use_pf_ppo=True \
  algorithm.pf_ppo.reweight_method=pow \
  algorithm.pf_ppo.weight_pow=2.0

4 什么时候建议开 / 关?

  • 建议关(False)的情况
    • 你先想跑一个最基础的 PPO baseline。
    • 奖励模型比较干净、样本规模不大,对噪声不太敏感。
  • 建议开(True)的情况
    • 用奖励模型做 RLHF / 偏好学习,感觉奖励信号有不少噪声。
    • 想更激进地利用高奖励的样本、弱化低质量样本对更新的影响。
    • 在阅读 PF‑PPO 相关论文/实验(如 Verl 仓库介绍 PF‑PPO 的部分)时,希望复现其中配置。

总结:

use_pf_ppo 不是改变 PPO 算法本身,而是在 PPO 更新前对训练数据做"基于偏好反馈的重加权/重采样" 的一个开关。开了以后,会根据 algorithm.pf_ppo.* 的配置,对样本按奖励分数重采样,从而减弱 noisy reward,增强高质量样本的训练贡献。

相关推荐
hhzz1 小时前
【Vision人工智能设计 】Wan(万相) 内容创作平台与能力
人工智能·阿里·视觉大模型·wan·万相
黑巧克力可减脂2 小时前
Vibe Coding重构CRM:以AI编程之术,破传统管理之困,承革新致远之道
人工智能·重构·软件工程·ai编程
wuxi_joe2 小时前
工业信息化与AI:制造业配置能力的重构
人工智能·重构
heimeiyingwang2 小时前
从 0 到 1:企业 AI 战略规划与落地路线图
大数据·人工智能
新缸中之脑2 小时前
让AI代理演示他们的工作
人工智能
专注VB编程开发20年2 小时前
百度AI垃圾说高通占小米股份15%雷总23%
人工智能·百度
Tadas-Gao2 小时前
架构逆转向量:AI时代规范驱动开发的范式重构与实践图谱
人工智能·云原生·重构·架构·系统架构·大模型
小程故事多_802 小时前
自省式检索Self-RAG,让AI学会“知之为知之”,构建可信赖的智能问答闭环
人工智能·aigc
阿杰学AI2 小时前
AI核心知识98——大语言模型之 Generative AI(简洁且通俗易懂版)
人工智能·语言模型·自然语言处理·aigc·生成式ai·generative ai