图片速览 DCN K-means-friendly Spaces: Simultaneous Deep Learning and Clustering

  • 本文使用了一种交替更新网络参数和聚类中心的方法。在网络更新完成之后,对于固定的网络参数和 M,再更新当前样本的分配向量。然后根据新的分配结果如式子3.8更新聚类中心:


  • 注:文中还有问题是否能进行凸优化的部分

CG

相关推荐
BUG收容所所长9 分钟前
二分查找的「左右为难」:如何优雅地找到数组中元素的首尾位置
前端·javascript·算法
carpell1 小时前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
itsuifengerxing1 小时前
python 自定义无符号右移
算法
云之渺1 小时前
数学十三
深度学习
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
猎板PCB厚铜专家大族1 小时前
高频 PCB 技术发展趋势与应用解析
人工智能·算法·设计规范
dying_man1 小时前
LeetCode--24.两两交换链表中的结点
算法·leetcode
yours_Gabriel1 小时前
【力扣】2434.使用机器人打印字典序最小的字符串
算法·leetcode·贪心算法
小天才才2 小时前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
l木本I2 小时前
大模型低秩微调技术 LoRA 深度解析与实践
python·深度学习·自然语言处理·lstm·transformer