机器学习之生成式模型与判别式模型的区别

根本区别在于是否计算了联合分布 P ( X , Y ) P(X,Y) P(X,Y)和是否比较了模型输出的概率大小.

生成式模型的特点

  • 对联合分布进行建模,然后通过朴素贝叶斯来求条件概率,选择使得条件概率最大的 Y Y Y
  • 可以还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 学习收敛速度快,当样本容量增加时,学到的模型可以更快地收敛于真实模型
  • 应对存在隐变量(不可观测的变量)的场景
  • 相比于判别式模型,往往模型效果差一些
  • 学习到的数据本身信息更多,能反应数据本身特性
  • 学习成本较高,需要更多的计算资源
  • 需要的样本数更多,样本较少时学习效果较差

判别式模型的特点

  • 不能还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 不能处理存在隐变量的场景
  • 由于直接学习的是条件概率 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者决策函数 f ( X ) f(X) f(X),往往学习的准确率更高
  • 由于直接学习的是 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者 f ( X ) f(X) f(X),可以对数据进行各种程序熵的抽象、定义特征并使用特征,可以简化学习问题
  • 对条件概率建模,学习不同类别之间的最优边界
  • 捕捉不同类别特征的差异信息,不学习本身分布信息,无法反映数据本身特性
  • 学习成本较低,需要的计算资源较少
  • 需要的样本数可以较少,少样本也能很好学习

典型的模型

  • 常见的判别式模型有:线性回归、限行判别分析、SVM、神经网络、K近邻、决策树、最大熵模型、boosting、条件随机场
  • 常见的生成式模型: HMM、朴素贝叶斯、GMM、LDA等
相关推荐
Swift社区9 分钟前
LeetCode 432 - 全 O(1) 的数据结构
数据结构·算法·leetcode
逝玄10 分钟前
关于图灵停机问题不可判定性证明
算法·计算机科学
低客的黑调22 分钟前
为你的项目选择一个适合的[垃圾收集器]
java·jvm·算法
我不是QI27 分钟前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
芬加达34 分钟前
leetcode34
java·数据结构·算法
H***99761 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
资深web全栈开发1 小时前
LeetCode 1015. 可被 K 整除的最小整数 - 数学推导与鸽巢原理
算法·leetcode·职场和发展
长桥夜波1 小时前
机器学习日报20
人工智能·机器学习
dragoooon341 小时前
[优选算法专题八.分治-归并 ——NO.46~48 归并排序 、数组中的逆序对、计算右侧小于当前元素的个数]
数据结构·算法·排序算法·分治