机器学习之生成式模型与判别式模型的区别

根本区别在于是否计算了联合分布 P ( X , Y ) P(X,Y) P(X,Y)和是否比较了模型输出的概率大小.

生成式模型的特点

  • 对联合分布进行建模,然后通过朴素贝叶斯来求条件概率,选择使得条件概率最大的 Y Y Y
  • 可以还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 学习收敛速度快,当样本容量增加时,学到的模型可以更快地收敛于真实模型
  • 应对存在隐变量(不可观测的变量)的场景
  • 相比于判别式模型,往往模型效果差一些
  • 学习到的数据本身信息更多,能反应数据本身特性
  • 学习成本较高,需要更多的计算资源
  • 需要的样本数更多,样本较少时学习效果较差

判别式模型的特点

  • 不能还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 不能处理存在隐变量的场景
  • 由于直接学习的是条件概率 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者决策函数 f ( X ) f(X) f(X),往往学习的准确率更高
  • 由于直接学习的是 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者 f ( X ) f(X) f(X),可以对数据进行各种程序熵的抽象、定义特征并使用特征,可以简化学习问题
  • 对条件概率建模,学习不同类别之间的最优边界
  • 捕捉不同类别特征的差异信息,不学习本身分布信息,无法反映数据本身特性
  • 学习成本较低,需要的计算资源较少
  • 需要的样本数可以较少,少样本也能很好学习

典型的模型

  • 常见的判别式模型有:线性回归、限行判别分析、SVM、神经网络、K近邻、决策树、最大熵模型、boosting、条件随机场
  • 常见的生成式模型: HMM、朴素贝叶斯、GMM、LDA等
相关推荐
铉铉这波能秀35 分钟前
LeetCode Hot100数据结构背景知识之字典(Dictionary)Python2026新版
数据结构·python·算法·leetcode·字典·dictionary
Σίσυφος190042 分钟前
PCL 姿态估计 RANSAC + SVD(基于特征匹配)
人工智能·机器学习
Warren2Lynch44 分钟前
C4 vs UML:从入门到结合使用的完整指南(含 Visual Paradigm AI 实操)
人工智能·机器学习·uml
蜡笔小马44 分钟前
10.Boost.Geometry R-tree 空间索引详解
开发语言·c++·算法·r-tree
唐梓航-求职中1 小时前
编程-技术-算法-leetcode-288. 单词的唯一缩写
算法·leetcode·c#
仟濹1 小时前
【算法打卡day3 | 2026-02-08 周日 | 算法: BFS】3_卡码网99_计数孤岛_BFS | 4_卡码网100_最大岛屿的面积DFS
算法·深度优先·宽度优先
Ll13045252981 小时前
Leetcode二叉树part4
算法·leetcode·职场和发展
颜酱1 小时前
二叉树遍历思维实战
javascript·后端·算法
宝贝儿好1 小时前
第二章: 图像处理基本操作
算法
小陈phd1 小时前
多模态大模型学习笔记(一)——机器学习入门:监督/无监督学习核心任务全解析
笔记·学习·机器学习