机器学习之生成式模型与判别式模型的区别

根本区别在于是否计算了联合分布 P ( X , Y ) P(X,Y) P(X,Y)和是否比较了模型输出的概率大小.

生成式模型的特点

  • 对联合分布进行建模,然后通过朴素贝叶斯来求条件概率,选择使得条件概率最大的 Y Y Y
  • 可以还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 学习收敛速度快,当样本容量增加时,学到的模型可以更快地收敛于真实模型
  • 应对存在隐变量(不可观测的变量)的场景
  • 相比于判别式模型,往往模型效果差一些
  • 学习到的数据本身信息更多,能反应数据本身特性
  • 学习成本较高,需要更多的计算资源
  • 需要的样本数更多,样本较少时学习效果较差

判别式模型的特点

  • 不能还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 不能处理存在隐变量的场景
  • 由于直接学习的是条件概率 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者决策函数 f ( X ) f(X) f(X),往往学习的准确率更高
  • 由于直接学习的是 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者 f ( X ) f(X) f(X),可以对数据进行各种程序熵的抽象、定义特征并使用特征,可以简化学习问题
  • 对条件概率建模,学习不同类别之间的最优边界
  • 捕捉不同类别特征的差异信息,不学习本身分布信息,无法反映数据本身特性
  • 学习成本较低,需要的计算资源较少
  • 需要的样本数可以较少,少样本也能很好学习

典型的模型

  • 常见的判别式模型有:线性回归、限行判别分析、SVM、神经网络、K近邻、决策树、最大熵模型、boosting、条件随机场
  • 常见的生成式模型: HMM、朴素贝叶斯、GMM、LDA等
相关推荐
追随者永远是胜利者22 分钟前
(LeetCode-Hot100)42. 接雨水
java·算法·leetcode·职场和发展·go
lifallen24 分钟前
点分治 (Centroid Decomposition)
java·数据结构·算法
田里的水稻2 小时前
FA_规划和控制(PC)-瑞德斯.谢普路径规划(RSPP))
人工智能·算法·数学建模·机器人·自动驾驶
罗湖老棍子2 小时前
【例 1】二叉苹果树(信息学奥赛一本通- P1575)
算法·树上背包·树型动态规划
元亓亓亓3 小时前
LeetCode热题100--76. 最小覆盖子串--困难
算法·leetcode·职场和发展
CHANG_THE_WORLD3 小时前
C++数组地址传递与数据影响:深入理解指针与内存
算法
json{shen:"jing"}3 小时前
力扣-单词拆分
数据结构·算法
aaa7873 小时前
Codeforces Round 1080 (Div. 3) 题解
数据结构·算法
csdn_life183 小时前
训练式推理:算力通缩时代下下一代AI部署范式的创新与落地
人工智能·深度学习·机器学习
浮生09194 小时前
DHUOJ 基础 85 86 87
数据结构·c++·算法