机器学习之生成式模型与判别式模型的区别

根本区别在于是否计算了联合分布 P ( X , Y ) P(X,Y) P(X,Y)和是否比较了模型输出的概率大小.

生成式模型的特点

  • 对联合分布进行建模,然后通过朴素贝叶斯来求条件概率,选择使得条件概率最大的 Y Y Y
  • 可以还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 学习收敛速度快,当样本容量增加时,学到的模型可以更快地收敛于真实模型
  • 应对存在隐变量(不可观测的变量)的场景
  • 相比于判别式模型,往往模型效果差一些
  • 学习到的数据本身信息更多,能反应数据本身特性
  • 学习成本较高,需要更多的计算资源
  • 需要的样本数更多,样本较少时学习效果较差

判别式模型的特点

  • 不能还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 不能处理存在隐变量的场景
  • 由于直接学习的是条件概率 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者决策函数 f ( X ) f(X) f(X),往往学习的准确率更高
  • 由于直接学习的是 P ( X ∣ Y ) P(X|Y) P(X∣Y)或者 f ( X ) f(X) f(X),可以对数据进行各种程序熵的抽象、定义特征并使用特征,可以简化学习问题
  • 对条件概率建模,学习不同类别之间的最优边界
  • 捕捉不同类别特征的差异信息,不学习本身分布信息,无法反映数据本身特性
  • 学习成本较低,需要的计算资源较少
  • 需要的样本数可以较少,少样本也能很好学习

典型的模型

  • 常见的判别式模型有:线性回归、限行判别分析、SVM、神经网络、K近邻、决策树、最大熵模型、boosting、条件随机场
  • 常见的生成式模型: HMM、朴素贝叶斯、GMM、LDA等
相关推荐
智者知已应修善业6 分钟前
【51单片机:两边向中间流水:即两边先点亮然后熄灭,次边的点亮再熄灭,直到最中间的两个点亮再熄灭,然后重复动作。】2023-3-4
c语言·c++·经验分享·笔记·嵌入式硬件·算法·51单片机
醒过来摸鱼38 分钟前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
是苏浙1 小时前
2025年11月17日力扣刷题小记
算法·刷题
@卞1 小时前
ST 表相关练习题
数据结构·c++·算法
醒过来摸鱼1 小时前
9.8 贝塞尔曲线
线性代数·算法·numpy
小狗照亮每一天2 小时前
【菜狗看背景】自动驾驶发展背景——20251117
人工智能·机器学习·自动驾驶
大白IT2 小时前
智能驾驶:从感知到规控的自动驾驶系统全解析
人工智能·机器学习·自动驾驶
2501_941111522 小时前
C++中的适配器模式
开发语言·c++·算法
2501_941111942 小时前
C++中的适配器模式变体
开发语言·c++·算法
数据与后端架构提升之路2 小时前
英伟达的 Alpamayo-R1:利用因果链推理赋能自动驾驶模型和数据工程剖析
人工智能·机器学习·自动驾驶