R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用

回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了现代回归分析主流发展方向。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为可信。本课程将分为复杂数据的回归及混合效应模型概述及数据探索;回归与混合效应模型,包括一般线性回归(lm)、广义线性回归(glm);线性混合效应模型(lmm)及广义线性混合效应模型(glmm);贝叶斯(brms)回归与混合效应模型;相关数据回归与混合效应模型及贝叶斯实现,包括嵌套数据、时间自相关数据,空间自相数据及系统发育数据分析;非线性数据回归分析及贝叶斯实现,包括广义可加(混合)模型和非线性(混合)模型等。

点击查看原文https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247522233&idx=3&sn=de641f4c293c3fd30d47d826aae0860b&chksm=ce647d52f913f444b9b8d387165ee5245f7903ef19689d7176e9e5b61a3e37f9cd85b14aa954&scene=21#wechat_redirect

1 复杂数据回归模型的选择策略

1)科学研究中数据及其复杂性

2)回归分析历史、理论基础

3)回归分析基本假设和常见问题

4)复杂数据回归模型选择策略

2 如何通过数据探索避免常见统计问题

  1. 数据缺失(missing value)
  2. 零值(zero trouble)
  3. 奇异值/离群值(outliers)
  4. 异质性(heterogeneity)
  5. 数据分布正态性(normality)
  6. 响应变量与预测变量间关系(relationships)
  7. 交互作用项(interaction)
  8. 共线性(collinearity)
  9. 样本独立性(independence)

专题一: 回归与混合效应(多水平/层次/嵌套)模型

1 .1 一般线性模型(lm)

1)基本形式、基本假设、估计方法、参数检验、模型检验

2)一般线性回归、方差分析及协方差分析

3)一般线性回归模型验证

4)一般线性回归模型选择-逐步回归

案例1:鱼类游速与水温关系的回归及协方差分析;

案例2:施肥和种植密度对作物产量的影响

案例3:决定海洋植食性鱼类多样性的决定因子-模型验证

案例4:淡水鱼丰度的环境因子的筛选-逐步回归

1 .2 广义线性模型(glm)

1) 基本形式、基本假设、估计方法、参数检验、模型检验

2) 0,1数据分析:伯努利分布、二项分布及其过度离散问题

3)计数数据各种情况及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

4) 广义线性模型的模型比较和选择-似然比LR和AIC

案例1:动物身体特征与患病与否( 0,1) 的关系的逻辑斯蒂回归

案例2:海豹年龄与攻击行为的关系- 0 ,1数据转化为比率数据分析

案例3:不同实验处理下蚜虫多度的差异分析-计数数据泊松回归

其他案例:零膨胀、零截断数据分析。。。。。。。。。。。。。。。。。。。。

1 .3 线性混合效应模型(lmm)

1) 线性混合效应模型基本原理

2) 线性混合效应模型建模步骤及实现

3) 线性混合效应模型的预测和模型诊断

4) 线性混合效应模型的多重比较

案例1:睡眠时间与反应速度关系

案例2:多因素实验(分层数据)的多重比较

1 .4 广义线性混合效应模型(glmm)

1)广义线性混合效应模型基本原理

2)广义线性混合效应模型建模步骤及流程

3)广义线性混合效应模型分析0,1数据

4)广义线性混合效应模型分析计数数据及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

案例1:蝌蚪"变态"与否(0,1)的多因素分析-逻辑斯蒂混合效应模型

案例2:虫食种子多度影响因素的多变量分析-泊松混合效应模型

案例3:模拟计数数据-零膨胀、零截断、过度离散等广义混合效应模型

专题二: 贝叶斯(brms)回归与混合效应(多水平/层次/嵌套)模型

2 .1 贝叶斯回归及混合效应模型上

1)贝叶斯回归分析简介

2)利用brms实现贝叶斯回归分析简介

3)贝叶斯回归分析的模型诊断、交叉验证、预测和作图

4)贝叶斯广义线性模型实现:gamma分布、伯努利分布、二项分布等

案例1:鱼游速与温度关系的贝叶斯回归-结果解读、模型验证、模型诊断

案例2:森林生物量与林龄关系贝叶斯回归-gamma分布、brms参数调整

案例3:动物身体特征与患病与否( 0,1) 的关系的贝叶斯回归-伯努利分布

案例 4 :海豹年龄与攻击行为的关系- 0 ,1数据转化为比率数据分析-二项分布

其他案例:贝叶斯分析计数数据过度离散、零膨胀等问题

2 .2 贝叶斯回归及混合效应模型下

1)贝叶斯线性混合效应模型:实现步骤、模型验证、多重比较

2)贝叶斯广义混合效应模型-计数数据分析:泊松、负二项、零膨胀泊松、零膨胀负二项等

案例1:睡眠时间与反应速度关系的贝叶斯线性混合效应模型

案例2:教师受欢迎程度的多变量预测-贝叶斯线性混合效应模型

案例3:虫食种子多度(计数数据)影响因素的多变量分析-贝叶斯广义混合效应模型

其他案例:贝叶斯分析计数数据过度离散、零膨胀等问题

专题三: 相关数据回归分析:嵌套、时间、空间、系统发育相关数据分析

3 .1 嵌套型随机效应混合效应模型分析及贝叶斯实现

1)数据分层问题及嵌套型随机效应混合效应模型介绍

2)嵌套型随机效应混合效应模型分析步骤及流程及模型选择(MuMIn)

3)嵌套型随机效应混合效应模型的方差分解:ICC、varcomp及贝叶斯法

4)经典方差分解案例讲解

案例1:不同种类海豚年龄多因素预测模型及模型选择(MuMIn)- 嵌套结构

案例2:纲/科/属/种型嵌套随机效应的方差分解及贝叶斯方法

案例3:物种属性可塑性和基因多样性对物种丰富度影响的相对贡献-全模型变差分解

3 .2 时间相关数据分析及贝叶斯实现

1)回归模型的方差异质性问题及解决途径

2)时间自相关分析:线性及混合效应模型及贝叶斯方法

3)时间自相关+方差异质性分析及贝叶斯实现

案例1:模拟数据方差异质性问题-gls ,lmm 及brms方法比较

案例2:鸟类多度变化的时间自相关分析-gls vs brms

案例3:资源脉冲与食谱关系分析:方差异质性 + 时间相关-lmm vs brms

3 .3 空间相关数据分析及贝叶斯实现

1)空间自相关概述

2)空间自相关问题解决方式:自相关修正参数、空间距离权重法、空间邻接权重法

3)空间自相关问题修正基本流程-gls和lme

4)空间自相关贝叶斯修正-空间距离权重 VS 空间邻接权重

案例1:北方林物种多样性与气候关系-一般线性回归模型空间自相关问题修正

案例2:全球水鸟巢穴捕食率影响因素分析-混合效应模型空间自相关问题修正

3 .4 系统发育相关数据分析及贝叶斯实现

1、系统发育简介:系统发育假说、系统发育信号及系统发育树

2、系统发育树及系统发育距离矩阵构建

3、系统发育信息纳入回归模型-广义最小二乘(gls)

4、系统发育信息纳入混合效应模型(lmm/glmm)及贝叶斯方法实现案例

案例1:模拟数据-系统发育相关对物种属性影响-gls vs brms

案例 2 :全球水鸟巢穴捕食率影响因素分析-系统发育混合效应模型:lmm vs brms

专题四: 非线性关系数据分析:广义可加(混合)模型(GAM/GAMM)和非线性(混合)(NLM/NLMM)模型

4 . 1"线性"回归的含义及非线性关系的判定

4 . 2广义可加(混合效应)(GAM/GAMM)模型及贝叶斯实现

4.3非线性(混合效应)(NLM/NLMM)模型及贝叶斯实现

相关推荐
scdifsn3 分钟前
动手学深度学习10.1. 注意力提示-笔记&练习(PyTorch)
pytorch·笔记·深度学习·注意力机制·注意力提示
Elastic 中国社区官方博客7 分钟前
Elasticsearch 和 Kibana 8.16:Kibana 获得上下文和 BBQ 速度并节省开支!
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
陌上阳光7 分钟前
动手学深度学习69 BERT预训练
人工智能·深度学习·bert
车载诊断技术8 分钟前
电子电气架构--- 实施基于以太网的安全车载网络
网络·人工智能·安全·架构·汽车·电子电器架构
学步_技术40 分钟前
自动驾驶系列—自动驾驶车辆的姿态与定位:IMU数据在复杂环境中的关键作用
人工智能·自动驾驶·imu
开发者每周简报1 小时前
当微软windows的记事本被AI加持
人工智能·windows·microsoft
沉下心来学鲁班1 小时前
欺诈文本分类检测(十八):基于llama.cpp+CPU推理
人工智能·语言模型·分类·cpu·llama.cpp
新手小白勇闯新世界1 小时前
点云论文阅读-1-pointnet++
论文阅读·人工智能·深度学习·神经网络·计算机视觉
小菜日记^_^1 小时前
BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense(论文阅读)
论文阅读·人工智能·深度学习·sp·ai安全·backdoor 后门攻击·安全四大
千天夜2 小时前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络