论文阅读:矩阵乘法GEMM的cache优化,子矩阵的切分方法Anatomy of High-Performance MatrixMultiplication

矩阵乘法优化的知名论文goto paper:

矩阵乘法的优化需要将矩阵切分成子矩阵,用子矩阵相乘的结果组合为原矩阵相乘的结果:

上图是拆分矩阵的方法,M表示矩阵,X方向和Y方向的两个维度都是未知的。P表示横条或竖条,X方向或Y方向有一个方向的维度是极小的。B表示block块,X方向和Y方向的两个维度都是极小的。

为了减小单个子矩阵计算量,要拆开A的整行和B的整列。不能让A的整行B的整列 作为子矩阵放入缓存进行计算。因此下图中第二列的Fig8和Fig10拆得最好,把A按列拆,使A的行不再完整,把B按行拆,使B的列不再完整。

下图是拆分矩阵后矩阵相乘的优化方法:

图中每列算法的含义:

第一列是 Matrix += Matrix * Matrix,就是矩阵乘加C += A * B。

第二列,(只讨论图8和图10,别的图不一样)是把 A 拆成多列、B 拆成多行,每次得到 与C尺寸相同的薄片,多层叠加得到完整的 C。

第三列是 更细致的拆分选择,A 的一列乘以 B 的一行,对于A 的一列乘以 B 的一行这一过程:

在第三列,Fig.8是把 A 的一列先拆成M个block,再将每个block(第i个)依次和 B 行相乘,相乘的结果是得到一个片(尺寸与C的子矩阵Ci相同),多个片叠加起来得到C矩阵;

在第三列,Fig.10是把 B 行拆成N个 block,再将每个block(第j个)依次被 A 乘,也是A列乘B行,得到C的一个片(尺寸与C的子矩阵Cj相同),再将C的多个片叠加得到C:

第四列和第三列的含义类似。

在第四列,Fig.8一个block乘以一行,共N个block。由于要放到register里,要减少数据的大小。必然行切成更小的slice;即把B竖着切成小块放进寄存器:

在第四列,Fig.10含义类似,把A横着切成小块放进寄存器。共M个block:

Fig.8在第四列处理竖着的小slice时,列主序是内存连续的,但行主序不连续。因此Fig.8更适合列主序。同理,此Fig.10更适合行主序。

因此最终结论是:列主序用Fig.8最优,因为竖着切;行主序用Fig.10最优,因为横着切。

对于Fig8的GEBP计算:

如下 5 个前提 都满足的情况下,理想的GEBP的计算过程和开销是怎么样的?

(前 3 个前提不考虑内存和寄存器存储结构中的 TLB,假设只有 内存、cache 和 ALU :)

  1. mc * kc 要小,小到 『 A + B的 nr 列 + C 的 nr 列 』能够一起塞进 cache
  2. 如果 1. 被满足,CPU 计算时不再受内存速度的限制,即得到的gflops值就是真实的计算能力
  3. A 或 A 的分块只会被加载进 Cache 一次,gemm过程中不会被换入又换出

(后 2 个前提要考虑 TLB,因为 TLB miss 会 stall CPU:)

4. mc 和 kc 要小,小到 『 A + B的 nr 列 + C 的 nr 列 』能够被 TLB 索引,即一定是小于 L2 cache 的。

**5.**A 或 A 的分块只被加载到 L2 cache 一次

因为Fig.8用的就是GEBP,所以想要高性能(高gflops)就得满足上面 5 个前提 。落到实处上就是如下4个参数限制 ,这些限制也是 OpenBLAS level3.c循环里写一堆if-else的理论根源:

  1. mc ≈ kc
  2. nr ≥ (Rcomp / 2 / Rload),其中 Rcomp 是算力、Rload 是 L2 cache 到 register 的带宽
  3. mc * kc ≤ K
  4. mc * kc 只能占 cache 的一半
相关推荐
墨绿色的摆渡人3 小时前
论文笔记(一百一十二)Pos3R: 6D Pose Estimation for Unseen Objects Made Easy
论文阅读
c0d1ng3 小时前
十二月第三周周报(论文阅读)
论文阅读
闻缺陷则喜何志丹13 小时前
【计算几何】仿射变换与齐次矩阵
c++·数学·算法·矩阵·计算几何
Xy-unu15 小时前
[LLM]AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning
论文阅读·人工智能·算法·机器学习·transformer·论文笔记·剪枝
闻缺陷则喜何志丹20 小时前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
RedMery1 天前
DETR类论文笔记
论文阅读·论文笔记
iAkuya1 天前
(leetcode)力扣100 18矩阵置零(哈希)
leetcode·矩阵·哈希算法
点云侠1 天前
粒子群优化算法求解三维变换矩阵的数学推导
线性代数·算法·矩阵
c#上位机1 天前
halcon计算仿射变换矩阵的逆矩阵
计算机视觉·矩阵·c#
m0_650108242 天前
3D Gaussian Splatting:实时辐射场渲染的突破性方案
论文阅读·三维重建·3d高斯溅射·实时视角切换·自适应密度控制·可微光栅化器·灵活高斯基元