自然语言处理从入门到应用——LangChain:模型(Models)-[大型语言模型(LLMs):基础知识]

分类目录:《自然语言处理从入门到应用》总目录


大型语言模型(LLMs)是LangChain的核心组件。LangChain不提供大型语言模型,而是提供了一个标准接口,通过该接口我们可以与各种LLMs进行交互。LLM类是专为与LLM接口设计的类。有许多LLM提供者(如:OpenAI、Cohere、Hugging Face),此类旨在为所有LLM提供一个标准接口。在《自然语言处理从入门到应用------LangChain:模型(Models)-[大型语言模型(LLMs)]》系列文章中,我们将专注于通用的LLM功能,而有关使用特定LLM包装器的详细信息,请参见具体的示例。

在本文中,我们将使用OpenAI LLM包装器,其功能对于所有LLM类型都是通用的。

dart 复制代码
from langchain.llms import OpenAI
llm = OpenAI(model_name="text-ada-001", n=2, best_of=2)

生成文本(Generate Text)是LLM最基本的功能,其传入一个字符串并返回一个字符串:

dart 复制代码
llm("Tell me a joke")

输出:

复制代码
'\n\nWhy did the chicken cross the road?\n\nTo get to the other side.'

generate:我们还可以用一个输入列表来调用它,得到是比仅输入文本更完整的响应。这个完整的响应包括多个顶级响应,以及LLM供应商特定的信息。

dart 复制代码
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"]*15)
len(llm_result.generations)

输出:

dart 复制代码
30

输入:

dart 复制代码
llm_result.generations[0]

输出:

dart 复制代码
[Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side!'), 
Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side.')]

输入:

dart 复制代码
llm_result.generations[-1]
dart 复制代码
[Generation(text="\n\nWhat if love neverspeech\n\nWhat if love never ended\n\nWhat if love was only a feeling\n\nI'll never know this love\n\nIt's not a feeling\n\nBut it's what we have for each other\n\nWe just know that love is something strong\n\nAnd we can't help but be happy\n\nWe just feel what love is for us\n\nAnd we love each other with all our heart\n\nWe just don't know how\n\nHow it will go\n\nBut we know that love is something strong\n\nAnd we'll always have each other\n\nIn our lives."), 
Generation(text='\n\nOnce upon a time\n\nThere was a love so pure and true\n\nIt lasted for centuries\n\nAnd never became stale or dry\n\nIt was moving and alive\n\nAnd the heart of the love-ick\n\nIs still beating strong and true.')]

我们还可以访问返回的特定于服务提供商的信息,这些信息在不同的服务提供商之间并不标准化:

dart 复制代码
llm_result.llm_output

输出:

dart 复制代码
{'token_usage': {'completion_tokens': 3903, 'total_tokens': 4023, 'prompt_tokens': 120}}

Number of Tokens:我们还可以估算在该模型中一段文本将包含多少tokens。这很有用,因为模型有一个上下文长度,并且对于更多tokens的成本更高,这意味着我们需要知道传入的文本有多长。按默认设置,使用tiktoken估计tokens:

dart 复制代码
llm.get_num_tokens("what a joke")

输出:

dart 复制代码
3

参考文献:

1\] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/ \[2\] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关推荐
FL162386312910 小时前
智慧工地建筑工地常见装备手推车切割机安全帽检测数据集VOC+YOLO格式13364张15类别
深度学习·yolo·机器学习
c#上位机11 小时前
halcon计算区域骨架
图像处理·人工智能·计算机视觉·c#·halcon
天一生水water11 小时前
储层认知→技术落地→产量优化
人工智能·算法·机器学习
华清远见成都中心11 小时前
人工智能的关键技术有哪些?
人工智能
绿蕉11 小时前
智能底盘:汽车革命的“新基石”
大数据·人工智能
GAOJ_K11 小时前
滚珠花键的使用时长与性能保持的量化关系
大数据·人工智能·科技·自动化·制造
天一生水water11 小时前
页岩油生产流程案例
人工智能·智慧油田
Yeliang Wu11 小时前
算力自由:用K8s和Ollama打造你的专属AI基础设施
人工智能·容器·kubernetes
*星星之火*11 小时前
【大白话 AI 答疑】第6篇 大模型指令微调:instruction/input/output核心解析及案例
服务器·前端·人工智能
元智启11 小时前
企业级AI智能体开发:从概念到落地的关键技术实践
人工智能