自然语言处理从入门到应用——LangChain:模型(Models)-[大型语言模型(LLMs):基础知识]

分类目录:《自然语言处理从入门到应用》总目录


大型语言模型(LLMs)是LangChain的核心组件。LangChain不提供大型语言模型,而是提供了一个标准接口,通过该接口我们可以与各种LLMs进行交互。LLM类是专为与LLM接口设计的类。有许多LLM提供者(如:OpenAI、Cohere、Hugging Face),此类旨在为所有LLM提供一个标准接口。在《自然语言处理从入门到应用------LangChain:模型(Models)-[大型语言模型(LLMs)]》系列文章中,我们将专注于通用的LLM功能,而有关使用特定LLM包装器的详细信息,请参见具体的示例。

在本文中,我们将使用OpenAI LLM包装器,其功能对于所有LLM类型都是通用的。

dart 复制代码
from langchain.llms import OpenAI
llm = OpenAI(model_name="text-ada-001", n=2, best_of=2)

生成文本(Generate Text)是LLM最基本的功能,其传入一个字符串并返回一个字符串:

dart 复制代码
llm("Tell me a joke")

输出:

'\n\nWhy did the chicken cross the road?\n\nTo get to the other side.'

generate:我们还可以用一个输入列表来调用它,得到是比仅输入文本更完整的响应。这个完整的响应包括多个顶级响应,以及LLM供应商特定的信息。

dart 复制代码
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"]*15)
len(llm_result.generations)

输出:

dart 复制代码
30

输入:

dart 复制代码
llm_result.generations[0]

输出:

dart 复制代码
[Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side!'), 
Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side.')]

输入:

dart 复制代码
llm_result.generations[-1]
dart 复制代码
[Generation(text="\n\nWhat if love neverspeech\n\nWhat if love never ended\n\nWhat if love was only a feeling\n\nI'll never know this love\n\nIt's not a feeling\n\nBut it's what we have for each other\n\nWe just know that love is something strong\n\nAnd we can't help but be happy\n\nWe just feel what love is for us\n\nAnd we love each other with all our heart\n\nWe just don't know how\n\nHow it will go\n\nBut we know that love is something strong\n\nAnd we'll always have each other\n\nIn our lives."), 
Generation(text='\n\nOnce upon a time\n\nThere was a love so pure and true\n\nIt lasted for centuries\n\nAnd never became stale or dry\n\nIt was moving and alive\n\nAnd the heart of the love-ick\n\nIs still beating strong and true.')]

我们还可以访问返回的特定于服务提供商的信息,这些信息在不同的服务提供商之间并不标准化:

dart 复制代码
llm_result.llm_output

输出:

dart 复制代码
{'token_usage': {'completion_tokens': 3903, 'total_tokens': 4023, 'prompt_tokens': 120}}

Number of Tokens:我们还可以估算在该模型中一段文本将包含多少tokens。这很有用,因为模型有一个上下文长度,并且对于更多tokens的成本更高,这意味着我们需要知道传入的文本有多长。按默认设置,使用tiktoken估计tokens:

dart 复制代码
llm.get_num_tokens("what a joke")

输出:

dart 复制代码
3

参考文献:

[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/

[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关推荐
qzhqbb16 分钟前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨41 分钟前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_8830410842 分钟前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k3 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班3 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型