PyTorch从零开始实现Transformer

文章目录

自注意力

计算公式

代码实现

python 复制代码
class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        assert (self.head_dim * heads == embed_size),  "Embed size needs  to  be div by heads"
        self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = nn.Linear(heads*self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        N = query.shape[0] # the number of training examples
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        # Split embedding into self.heads pieces
        values = values.reshape(N, value_len, self.heads, self.head_dim)
        keys = keys.reshape(N, key_len, self.heads, self.head_dim)
        queries = query.reshape(N, query_len, self.heads, self.head_dim)

        values = self.values(values)
        keys = self.keys(keys)
        queries = self.queries(queries)

        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # 矩阵乘法,使用爱因斯坦标记法
        # queries shape: (N, query_len, heads, heads_dim)
        # keys shape: (N, key_len, heads, heads_dim)
        # energy shape: (N, heads, query_len, key_len)

        if mask is not None:
            energy = energy.masked_fill(mask==0, float("-1e20")) 
            #Fills elements of self tensor with value where mask is True

        attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
        out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(
            N, query_len, self.heads*self.head_dim
        ) # 矩阵乘法,使用爱因斯坦标记法einsum
        # attention shape: (N, heads, query_len, key_len)
        # values shape: (N, value_len, heads, head_dim)
        # after einsum (N, query_len, heads, head_dim) then flatten last two dimensions

        out = self.fc_out(out)
        return out

Transformer块

我们把Transfomer块定义为如下图所示的结构,这个Transformer块在编码器和解码器中都有出现过。

代码实现

python 复制代码
class TransformerBlock(nn.Module):
    def __init__(self, embed_size, heads, dropout, forward_expansion):
        super(TransformerBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm1 = nn.LayerNorm(embed_size)
        self.norm2 = nn.LayerNorm(embed_size)
        self.feed_forward = nn.Sequential(
            nn.Linear(embed_size, forward_expansion*embed_size),
            nn.ReLU(),
            nn.Linear(forward_expansion*embed_size, embed_size)
        )
        self.dropout = nn.Dropout(dropout)

    def forward(self, value, key, query, mask):
        attention = self.attention(value, key, query, mask)

        x = self.dropout(self.norm1(attention + query))
        forward = self.feed_forward(x)
        out = self.dropout(self.norm2(forward + x))
        return out

编码器

编码器结构如下所示,Inputs经过Input Embedding 和Positional Encoding之后,通过多个Transformer块

代码实现

python 复制代码
class Encoder(nn.Module):
    def __init__(self, 
                 src_vocab_size,
                 embed_size,
                 num_layers,
                 heads,
                 device,
                 forward_expansion,
                 dropout,
                 max_length
                 ):
        super(Encoder, self).__init__()
        self.embed_size = embed_size
        self.device = device
        self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                TransformerBlock(
                    embed_size,
                    heads,
                    dropout=dropout,
                    forward_expansion=forward_expansion
                )
            for _ in range(num_layers)]
        )
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        N, seq_lengh = x.shape
        positions = torch.arange(0, seq_lengh).expand(N, seq_lengh).to(self.device)
        out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))

        for layer in self.layers:
            out = layer(out, out, out, mask)

        return out

解码器块

解码器块结构如下图所示

代码实现

python 复制代码
class DecoderBlock(nn.Module):
    def __init__(self, embed_size, heads, forward_expansion, dropout, device):
        super(DecoderBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm = nn.LayerNorm(embed_size)
        self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, value, key, src_mask, trg_mask):
        attention = self.attention(x, x, x, trg_mask)
        query = self.dropout(self.norm(attention + x))
        out = self.transformer_block(value, key, query, src_mask)
        return out

解码器

解码器块加上word embedding 和 positional embedding之后构成解码器

代码实现

python 复制代码
class Decoder(nn.Module):
    def __init__(self, 
                 trg_vocab_size, 
                 embed_size, 
                 num_layers, 
                 heads, 
                 forward_expansion, 
                 dropout, 
                 device, 
                 max_length):
        super(Decoder, self).__init__()
        self.device = device
        self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
             for _ in range(num_layers)]
        )
        self.fc_out = nn.Linear(embed_size, trg_vocab_size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, enc_out, src_mask, trg_mask):
        N, seq_length = x.shape
        positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        x = self.dropout((self.word_embedding(x) + self.position_embedding(positions)))

        for layer in self.layers:
            x = layer(x, enc_out, enc_out, src_mask, trg_mask)

        out = self.fc_out(x)
        return out

整个Transformer

代码实现

python 复制代码
class Transformer(nn.Module):
    def __init__(self,
                 src_vocab_size, 
                 trg_vocab_size,
                 src_pad_idx,
                 trg_pad_idx,
                 embed_size=256,
                 num_layers=6,
                 forward_expansion=4,
                 heads=8,
                 dropout=0,
                 device="cuda",
                 max_length=100
                 ):
        super(Transformer, self).__init__()
        self.encoder = Encoder(
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length
        )

        self.decoder = Decoder(
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length
        )
        self.src_pad_idx = src_pad_idx
        self.trg_pad_idx = trg_pad_idx
        self.device = device

    def make_src_mask(self, src):
        src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
        #(N, 1, 1, src_len)
        return src_mask.to(self.device)
    
    def make_trg_mask(self, trg):
        N, trg_len = trg.shape
        trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
            N, 1, trg_len, trg_len
        )
        return trg_mask.to(self.device)
    
    def forward(self, src, trg):
        src_mask = self.make_src_mask(src)
        trg_mask = self.make_trg_mask(trg)
        enc_src = self.encoder(src, src_mask)
        out = self.decoder(trg, enc_src, src_mask,  trg_mask)
        return out
    

参考来源

[1] https://www.youtube.com/watch?v=U0s0f995w14

[2] https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/transformer_from_scratch/transformer_from_scratch.py

[3] https://arxiv.org/abs/1706.03762

[4] https://www.youtube.com/watch?v=pkVwUVEHmfI

全部代码(可直接运行)

python 复制代码
import torch
import torch.nn as nn

class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        assert (self.head_dim * heads == embed_size),  "Embed size needs  to  be div by heads"
        self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = nn.Linear(heads*self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        N = query.shape[0] # the number of training examples
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        # Split embedding into self.heads pieces
        values = values.reshape(N, value_len, self.heads, self.head_dim)
        keys = keys.reshape(N, key_len, self.heads, self.head_dim)
        queries = query.reshape(N, query_len, self.heads, self.head_dim)

        values = self.values(values)
        keys = self.keys(keys)
        queries = self.queries(queries)

        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        # queries shape: (N, query_len, heads, heads_dim)
        # keys shape: (N, key_len, heads, heads_dim)
        # energy shape: (N, heads, query_len, key_len)

        if mask is not None:
            energy = energy.masked_fill(mask==0, float("-1e20")) 
            #Fills elements of self tensor with value where mask is True

        attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
        out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(
            N, query_len, self.heads*self.head_dim
        )
        # attention shape: (N, heads, query_len, key_len)
        # values shape: (N, value_len, heads, head_dim)
        # after einsum (N, query_len, heads, head_dim) then flatten last two dimensions

        out = self.fc_out(out)
        return out


class TransformerBlock(nn.Module):
    def __init__(self, embed_size, heads, dropout, forward_expansion):
        super(TransformerBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm1 = nn.LayerNorm(embed_size)
        self.norm2 = nn.LayerNorm(embed_size)
        self.feed_forward = nn.Sequential(
            nn.Linear(embed_size, forward_expansion*embed_size),
            nn.ReLU(),
            nn.Linear(forward_expansion*embed_size, embed_size)
        )
        self.dropout = nn.Dropout(dropout)

    def forward(self, value, key, query, mask):
        attention = self.attention(value, key, query, mask)

        x = self.dropout(self.norm1(attention + query))
        forward = self.feed_forward(x)
        out = self.dropout(self.norm2(forward + x))
        return out
    
class Encoder(nn.Module):
    def __init__(self, 
                 src_vocab_size,
                 embed_size,
                 num_layers,
                 heads,
                 device,
                 forward_expansion,
                 dropout,
                 max_length
                 ):
        super(Encoder, self).__init__()
        self.embed_size = embed_size
        self.device = device
        self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                TransformerBlock(
                    embed_size,
                    heads,
                    dropout=dropout,
                    forward_expansion=forward_expansion
                )
            for _ in range(num_layers)]
        )
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        N, seq_lengh = x.shape
        positions = torch.arange(0, seq_lengh).expand(N, seq_lengh).to(self.device)
        out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))

        for layer in self.layers:
            out = layer(out, out, out, mask)

        return out

class DecoderBlock(nn.Module):
    def __init__(self, embed_size, heads, forward_expansion, dropout, device):
        super(DecoderBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm = nn.LayerNorm(embed_size)
        self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, value, key, src_mask, trg_mask):
        attention = self.attention(x, x, x, trg_mask)
        query = self.dropout(self.norm(attention + x))
        out = self.transformer_block(value, key, query, src_mask)
        return out
    
class Decoder(nn.Module):
    def __init__(self, 
                 trg_vocab_size, 
                 embed_size, 
                 num_layers, 
                 heads, 
                 forward_expansion, 
                 dropout, 
                 device, 
                 max_length):
        super(Decoder, self).__init__()
        self.device = device
        self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
             for _ in range(num_layers)]
        )
        self.fc_out = nn.Linear(embed_size, trg_vocab_size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, enc_out, src_mask, trg_mask):
        N, seq_length = x.shape
        positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        x = self.dropout((self.word_embedding(x) + self.position_embedding(positions)))

        for layer in self.layers:
            x = layer(x, enc_out, enc_out, src_mask, trg_mask)

        out = self.fc_out(x)
        return out

class Transformer(nn.Module):
    def __init__(self,
                 src_vocab_size, 
                 trg_vocab_size,
                 src_pad_idx,
                 trg_pad_idx,
                 embed_size=256,
                 num_layers=6,
                 forward_expansion=4,
                 heads=8,
                 dropout=0,
                 device="cuda",
                 max_length=100
                 ):
        super(Transformer, self).__init__()
        self.encoder = Encoder(
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length
        )

        self.decoder = Decoder(
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length
        )
        self.src_pad_idx = src_pad_idx
        self.trg_pad_idx = trg_pad_idx
        self.device = device

    def make_src_mask(self, src):
        src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
        #(N, 1, 1, src_len)
        return src_mask.to(self.device)
    
    def make_trg_mask(self, trg):
        N, trg_len = trg.shape
        trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
            N, 1, trg_len, trg_len
        )
        return trg_mask.to(self.device)
    
    def forward(self, src, trg):
        src_mask = self.make_src_mask(src)
        trg_mask = self.make_trg_mask(trg)
        enc_src = self.encoder(src, src_mask)
        out = self.decoder(trg, enc_src, src_mask,  trg_mask)
        return out
    
if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(device)

    x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0], [1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(
        device
    )
    trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0], [1, 5, 6, 2, 4, 7, 6, 2]]).to(device)

    src_pad_idx = 0
    trg_pad_idx = 0
    src_vocab_size = 10
    trg_vocab_size = 10
    model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, device=device).to(device)
    out = model(x, trg[:, :-1])
    print(out.shape)
相关推荐
起名字什么的好难1 分钟前
conda虚拟环境安装pytorch gpu版
人工智能·pytorch·conda
18号房客8 分钟前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
百家方案10 分钟前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
云起无垠17 分钟前
“AI+Security”系列第4期(一)之“洞” 见未来:AI 驱动的漏洞挖掘新范式
人工智能
QQ_77813297435 分钟前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
清 晨1 小时前
Web3 生态全景:创新与发展之路
人工智能·web3·去中心化·智能合约
公众号Codewar原创作者1 小时前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
IT古董1 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生1 小时前
机器学习连载
人工智能·机器学习
Trouvaille ~2 小时前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分